Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T22:58:43.434Z Has data issue: false hasContentIssue false

Electrochemically Fabricated Conducting Polymer Nanoframework Electrode Junctions That Function as Resistive Sensors

Published online by Cambridge University Press:  01 February 2011

Hsian-Rong Tseng
Affiliation:
Crump Institute for Molecular Imaging and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA 700 Westwood Plaza, Los Angeles, CA 90095
Jun Wang
Affiliation:
Crump Institute for Molecular Imaging and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA 700 Westwood Plaza, Los Angeles, CA 90095
Maksudul M. Alam
Affiliation:
Crump Institute for Molecular Imaging and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA 700 Westwood Plaza, Los Angeles, CA 90095
Get access

Abstract

We have demonstrated a template-free, site-specific, and scalable electrochemical method for the fabrication of individually addressable conducting polymer nanoframework electrode junctions in a parallel-oriented array. These conducting polymer nanoframeworks, which are composed of numerous intercrossing conducting polymer nanowires that have uniform diameters ranging from 40 to 150 nm, can be used for the chemical sensing of HCl and NH3 gases and organic vapors and for sensing pH values of aqueous solutions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Huang, J. X., Virji, S., Weiller, B. H., Kaner, R. B., J. Am. Chem. Soc. 125, 314315 (2003).Google Scholar
2. Liu, H. Q., Kameoka, J., Czaplewski, D. A., Craighead, H. G., Nano Lett. 4, 671675 (2004).Google Scholar
3. Park, S., Lim, J. H., Chung, S. W., Mirkin, C. A., Science 303, 348351 (2004).Google Scholar
4. Hatano, T., Bae, A. H., Takeuchi, M., Fujita, N., Kaneko, K., Ihara, H., Takafuji, M., Shinkai, S., Angew. Chem. Int. Ed. 43, 465469 (2004).Google Scholar
5. Liang, L., Liu, J., Windisch, C. F., Exarhos, G. J., Lin, Y. H., Angew. Chem. Int. Ed., 41, 36653668 (2002).Google Scholar
6. Wang, J., Chan, S., Carlson, R. R., Luo, Y., Ge, G., Ries, R. S., Heath, J. R., Tseng, H.-R., Nano Lett. 4, 16931697 (2004).Google Scholar
7. MacDiarmid, A. G., Chiang, J. C., Richter, A. F., Epstein, A. J., Synth. Met. 18, 285290 (1987).Google Scholar