Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T06:56:25.199Z Has data issue: false hasContentIssue false

Electrochemical Synthesis of Molybdenum Oxide Thin Films: Deposition Mechanism and Template-Directed Assembly of Nanostructured Materials and Components

Published online by Cambridge University Press:  15 February 2011

Todd M. McEvoy
Affiliation:
University of Texas at AustinDepartment of Chemistry and Biochemistry Austin, TX 78712
Hugo Celio
Affiliation:
University of Texas at AustinDepartment of Chemistry and Biochemistry Austin, TX 78712
Emily E. Barton
Affiliation:
University of Texas at AustinDepartment of Chemistry and Biochemistry Austin, TX 78712
Keith J. Stevenson
Affiliation:
University of Texas at AustinDepartment of Chemistry and Biochemistry Austin, TX 78712
Get access

Abstract

We describe the electrochemical deposition of molybdenum oxide thin films prepared from aqueous solutions containing peroxo-poly and oxometallate complexes of molybdenum(VI). Electrochemical quartz crystal microgravimetry (EQCM) was used to establish corresponding reaction mechanisms for films grown at different deposition potentials. Electrodeposition from acidified sodium molybdate solutions proceeds by the reduction of molybdic acid; whilst deposition from aqueous peroxo-based solutions involves the graded reduction of several solution components, primarily comprising molybdic acid and peroxopolymolybdates. Films grown from acidified sodium molybdate solutions are weakly adherent and easily rinsed off, while those grown from peroxo-polymolybdate solutions are strongly attached and stable. Careful regulation of the deposition potential allows for controlled growth of distinct molybdenum oxide compositions to produce films with varied water content and valency. Electrochemical deposition through sacrificial colloidal-crystal templates is also demonstrated to prepare macroporous thin films comprising hexagonally close-packed arrays of spherical pores.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Winter, M., Besenhard, J. O., Spahr, M. E. and Novak, P., Adv. Mater. 10, 725 (1998).Google Scholar
2. Granqvist, C. G., Handbook of Inorganic Electrochromic Materials, 1st ed. (Elsevier, Amsterdam, 1995).Google Scholar
3. Schroden, R. C., Al-Daous, M., Blanford, C. F. and Stein, A., Chem. Mater. 14, 3305 (2002).Google Scholar
4. Weckhuysen, B. M. and Wachs, I. E., in Handbook of Surfaces and Interfaces of Materials, Vol. 1, edited by Nalwa, H. S. (Academic Press, New York, 2001), p. 613.Google Scholar
5. Rolison, D. R. and Dunn, B., J. Mater. Chem. 11, 963 (2001).Google Scholar
6. Liu, P., Zhang, J. G., Tracy, C. E. and Turner, J. A., Electrochem. Solid State Lett. 3, 163 (2000).Google Scholar
7. Velev, O. D., Jede, T. A., Lobo, R. F. and Lenhoff, A. M., Nature, 389, 447 (1997).Google Scholar
8. Velev, O. D. and Kaler, E. W., Adv. Mater. 12, 531 (2000).Google Scholar
9. Sakamoto, J. S. and Dunn, B., J. Mater. Chem. 12, 2859 (2002).Google Scholar
10. Sides, C. R., Li, N., Patrissi, C. J., Scrosati, B. and Martin, C. R., MRS Bull. 8, 604 (2002).Google Scholar
11. Bartlett, P. N., Dunford, T. and Ghanem, M. A., J. Mater. Chem. 12, 3130 (2002).Google Scholar
12. Braun, P. V. and Wiltzius, P., Nature, 402, 603 (1999).Google Scholar
13. Therese, G. H. A. and Kamath, P. V., Chem. Mater. 12, 1195 (2000).Google Scholar
14. McEvoy, T. M., Stevenson, K. J., Hupp, J. T. and Dang, X., Langmuir, 19, 4316 (2003).Google Scholar
15. Kurusu, Y., Bull. Chem. Soc. Jpn. 54, 293 (1981).Google Scholar
16. Dong, S. and Wang, B., J. Electroanal. Chem. 370, 141 (1994).Google Scholar
17. Liu, S., Zhang, Q., Wang, E. and Dong, S., Electrochem. Comm. 1, 365 (1999).Google Scholar
18. Guerfi, A., Paynter, R. W. and Dao, L. H., J. Electrochem. Soc. 142, 3457 (1995).Google Scholar
19. Muelenkamp, E. A., J. Electrochem. Soc. 44, 1664 (1997).Google Scholar
20. McEvoy, T. M. and Stevenson, K. J., Anal. Chim. Acta. (2003) (in press).Google Scholar
21. Tytko, K. H. and Gras, D., in Gmelin Hankbook of Inorganic Chemistry, Molybdenum Supplement, Vol. B 3b, 8th ed., edited by Katscher, H. and Schroder, F. (Springer-Verlag, New York, 1989).Google Scholar
22. Brown, P. L., Shying, M. E. and Sylva, R. N., J. Chem. Soc. Dalton Trans. 9, 2149 (1987).Google Scholar
23. Dickman, M. H. and Pope, M. T., Chem. Rev. 94, 569 (1994).Google Scholar
24. Pope, M. T., Heteropoly and Isopoly Oxometalates, (Springer-Verlag, Berlin, 1983).Google Scholar
25. Howarth, O. W., Petterson, L. and Andersson, I., in Polyoxometalate Chemistry from Topology via Self-Assembly to Applications, edited by Pope, M. T. and Muller, A. (Kluwer, Dordrecht, 2001), p. 145.Google Scholar
26. Sauerbrey, G., Z. Phys. 155, 206 (1959).Google Scholar
27. Bruckenstein, S. and Swathirajan, S., Electrochim. Acta. 30, 851 (1985).Google Scholar
28. Celio, H., McEvoy, T. M., Barton, E. E. and Stevenson, K. J., in preparation.Google Scholar
29. Denkov, N. D., Velev, O. D., Kralchevsky, P. A., Ivanov, I. B., Yoshimura, H. and Nagayama, K., Langmuir, 8, 3183 (1992).Google Scholar
30. Conway, B. E., Birss, V., Wojtowicz, J, J. Power Sources 66, 1 (1997).Google Scholar