Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-28T23:32:31.440Z Has data issue: false hasContentIssue false

Electrochemical Study, Synthesis and Microstructural Characterization of Lithium and Sodium Inserted W18O49.

Published online by Cambridge University Press:  16 February 2011

A. Martinez De La Cruz
Affiliation:
Departamento de Química Inorgínica, Facultad de Ciencias Químicas, Universidad Complutense, Madrid 28040, Spain Facultad de Ciencias Químicas, Universidad Autonóma de Nuevo León, Apartado Postal 1864, Monterrey, Móxico
Leticia M. Torres-Martinez
Affiliation:
Facultad de Ciencias Químicas, Universidad Autonóma de Nuevo León, Apartado Postal 1864, Monterrey, Móxico
F. Garciaalvarado
Affiliation:
Departamento de Química Inorgínica, Facultad de Ciencias Químicas, Universidad Complutense, Madrid 28040, Spain
E. Moran
Affiliation:
Departamento de Química Inorgínica, Facultad de Ciencias Químicas, Universidad Complutense, Madrid 28040, Spain
M. A. Alario-Franco
Affiliation:
Departamento de Química Inorgínica, Facultad de Ciencias Químicas, Universidad Complutense, Madrid 28040, Spain
Get access

Abstract

The formation of lithium inserted W18O49 phases has been studied byelectrochemical methods. When lithium is inserted, several single phases LixW18O49 are observed in the range 0 ≤ x ≤ 40 between 3 and 1 V. Nevertheless the reaction is reversible only for x ≤ 22. Chemical reactions of W18O49 with different quantities of n-butyllithium have been carried out to isolate and characterize some of these phases. For Li17W18O49, this is ˜1:1 Li/W ratio, electron diffraction experiments clearly indicate that lithium produces a periodicity change, doubling the a, b and c cell parameters. On the other hand, when sodium is inserted in W18O49 two single phase regions NaxW18O49 are observed within the range 0 ≤ x ≤ 1.2 between 3 and 0.5 V.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Pickering, R. and Tilley, R.J.D., J. Solid State Chem. 16, 247 ( 1976).Google Scholar
2. Booth, J., Ekström, T., Iguchi, E. and Tilley, R.J.D., J. Solid State Chem. 41, 293 (1982).Google Scholar
3. Bursill, L.A., J. Solid State Chem. 48, 256 ( 1983 ).Google Scholar
4. Lundberg, M., Sundberg, M. and Magnéli, A., J. Solid State Chem. 44, 32 (1982).Google Scholar
5. Magnéli, A., Ark. Kemi 1, 213 ( 1949 ).Google Scholar
6. Cheng, Kent H. and Whittingham, M. Stanley, Solid State Ionics 1, 151 (1980).Google Scholar
7. Kay, S.A., D. Phil. Thesis, University of Oxford (1986).Google Scholar
8. Rosique-Pérez, C., Calbet, J. González-, Vallet-Regi, M. and Alario-Franco, M.A., J. Solid State Chem. 76, 313 (1988).Google Scholar
9. Tarascon, J.M., J. Electrochem. Soc., 132, 2089 ( 1985).Google Scholar
10. Guyomard, D. and Tarascon, J.M., J. Electrochem. Soc. 139, 937 (1992).Google Scholar
11. García-Alvarado, F., Tarascon, J.M. and Wilkens, B., J.Electrochem. Soc. 139, 3206 (1992).Google Scholar
12. Cheng, K.H., Jacobson, A.J. and Whittingham, M.S., Solid State Ionics 5, 355 ( 1981).Google Scholar
13. Banks, E. and Goldstein, A., Inorg. Chem. 7, 967 ( 1968).Google Scholar
14. Shannon, R.D., Acta Cryst. A32, 751 ( 1976 ).Google Scholar