Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T01:55:18.895Z Has data issue: false hasContentIssue false

Electrochemical sensing of aerobic marine bacterial biofilms and the influence of nitric oxide attachment control

Published online by Cambridge University Press:  07 July 2011

Stéphane Werwinski
Affiliation:
National Centre for Advanced Tribology at Southampton (NCATS), School of Engineering Sciences, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
Julian A. Wharton
Affiliation:
National Centre for Advanced Tribology at Southampton (NCATS), School of Engineering Sciences, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
M. Debora Iglesias-Rodriguez
Affiliation:
Ocean Biogeochemistry and Ecosystems, National Oceanography Centre, University of Southampton, Waterfront Campus, European Way, Southampton, SO14 3ZH, UK.
Keith R. Stokes
Affiliation:
National Centre for Advanced Tribology at Southampton (NCATS), School of Engineering Sciences, University of Southampton, Highfield, Southampton, SO17 1BJ, UK. Physical Sciences Department, Dstl, Porton Down, Salisbury, Wiltshire, SP4 0JQ, UK.
Get access

Abstract

Suitable in situ techniques capable of sensing for the presence of a biofilm on metallic surfaces are becoming increasingly necessary, especially in order to maintain seawater pipe system performance. This study has investigated the detection of aerobic marine bacterial biofilms using electrochemical impedance spectroscopy by monitoring the interfacial response of Pseudoalteromonas sp. NCIMB 2021 attachment and growth in order to identify characteristic events on a 0.2 mm diameter gold electrode surface. Uniquely, the applicability of surface charge density has been proven to be valuable in determining biofilm attachment and cell enumeration over 72 h duration on a gold surface within a modified continuous culture flow cel(lsa controlled low laminar flow regime with a Reynolds number ≈ 1).In addition, the potential for biofilm disruption has been evaluated using 500 nM of the nitric oxide (NO) donor sodium nitroprusside (NO is important for the regulation of a number of diverse biological processes). Ex situ confocal microscopy studies were performed to confirm biofilm coverage and morphology, plus the determination and quantification of the NO biofilm dispersal effects. Overall, the capability of the sensor to electrochemically detect the presence of initial bacterial biofilm formation and extent has been established and shown to have potential for real-time biofilm monitoring.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Railkin, A.I., Marine Biofouling: Colonization Processes and Defenses, 1st ed., CRC Press LLC, USA (2004).Google Scholar
2. Flemming, H.-C., Sriyutha Murthy, P., Venkatesan, R. and Cooksey, K.E., Marine and Industrial Biofouling, Springer, Germany (2009).10.1007/978-3-540-69796-1Google Scholar
3. Duddridge, J.E., Kent, C.A. and Laws, J.F., Biotechnol. Bioeng. 24, 153164 (1982).10.1002/bit.260240113Google Scholar
4. Scotto, V. and Lai, M.E., Corros. Sci. 40, 10071018 (1998).10.1016/S0010-938X(98)00038-9Google Scholar
5. Riegman, R., Stolte, W., Noordeloos, A.A.M. and Slezak, D., J. Phycol. 36, 8796 (2000).10.1046/j.1529-8817.2000.99023.xGoogle Scholar
6. Fletcher, M., Can. J. Microbiology 23, 16 (1977).10.1139/m77-001Google Scholar
7. Characklis, W.G. and Marshall, K.C., Biofilms,Wiley,USA (1990).Google Scholar
8. Barraud, N., Hassett, D.J., Hwang, S.-H., Rice, S.A., Kjelleberg, S. and Webb, J.S., J. Bacteriol. 188, 73447353 (2006).10.1128/JB.00779-06Google Scholar
9. Webb, J.S., Thompson, L.S., James, S., Charlton, T., Tolker-Nielsen, T., Koch, B., Givskov, M. and Kjelleberg, S., J. Bacteriol. 185, 45854592 (2003).10.1128/JB.185.15.4585-4592.2003Google Scholar
10. Daniels, J.S. and Pourmand, N., Electroanal. 19, 12391257 (2007).10.1002/elan.200603855Google Scholar
11. Mulder, W.H., Sluyters, J.H., Pajkossy, T. and Nyikos, I., J. Electroanal. Chem. 285, 103115 (1990).10.1016/0022-0728(90)87113-XGoogle Scholar
12. Kim, C.-H., Pyun, S.-I. and Kim, J.-H., Electrochim. Acta 48, 34553463 (2003).10.1016/S0013-4686(03)00464-XGoogle Scholar
13. Schiller, C.A. and Strunz, W., Electrochim. Acta 46, 36193625 (2001).10.1016/S0013-4686(01)00644-2Google Scholar
14. Jorcin, J.-B., Orazem, M.E., Pebere, N. and Tribollet, B., Electrochim. Acta 51, 14731479 (2006).10.1016/j.electacta.2005.02.128Google Scholar
15. Oldham, K.B., Electrochem. Commun. 6, 210214 (2004).10.1016/j.elecom.2003.12.002Google Scholar
16. Orazem, M.E. and Tribollet, B., Electrochemical Impedance Spectroscopy, John Wiley & Sons, USA (2008).10.1002/9780470381588Google Scholar
17. Brug, G.J., Van Den Eeden, A.L.G., Sluyters-Rehbach, M., Sluyters, J.H., J. Electroanal. Chem. 176, 275295 (1984).10.1016/S0022-0728(84)80324-1Google Scholar
18. Orazem, M.E., Pebere, N. and Tribollet, B., in: Shiffler, D.A., Natishan, P.M., Tsuru, T. and Ito, S. (Eds.), Corrosion in Marine and Saltwater Environments, PV 2004-14, Electrochemical Society, Pennington, NJ, 13-29 (2005).Google Scholar
19. Muñoz-Berbel, X., García-Aljaro, C. and Muñoz, F.J., Electrochim. Acta 53, 57395744 (2008).10.1016/j.electacta.2008.03.050Google Scholar
20. Bayoudh, S., Othmane, A., Ponsonnet, L. and Ben Ouada, H., Colloid. Surface. A 318, 291300 (2008).10.1016/j.colsurfa.2008.01.005Google Scholar