Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T15:15:07.243Z Has data issue: false hasContentIssue false

Electrochemical preparation of nanostructured TiO2 as anode materials for Li ion batteries

Published online by Cambridge University Press:  15 March 2011

Huanan Duan
Affiliation:
Department of Mechanical Engineering, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA 01609, U.S.A.
Xiangping Chen
Affiliation:
Department of Mechanical Engineering, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA 01609, U.S.A. College of Material Science & Technology, South China University of Technology, Guangzhou, Guangdong 510644, China
Joe Gnanaraj
Affiliation:
Yardney Technical Products, Inc., 82 Mechanic Street, Pawcatuck, CT 06379, U.S.A.
Jianyu Liang
Affiliation:
Department of Mechanical Engineering, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA 01609, U.S.A.
Get access

Abstract

TiO2 is an attractive anode material for Li-ion batteries due to its high capacity, high mechanical stability during Li intercalation/deintercalation process, limited side reactions with the electrolyte, low cost, and environmental friendliness. In this study, titanium hydroxide gel films were prepared in acidic aqueous solutions of TiOSO4, H2O2 and KNO3 by potentiostatic cathodic electrosynthesis on various copper substrates, including planar Cu foil, mechanically polished planar Cu foil, and Cu nanorod arrays grown on Cu foil. Crystalline TiO2 films were obtained by heat treating the electrodeposited titanium hydroxide gel films at 500 oC in argon atmosphere. The morphology and microstructure of the TiO2 films were characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD). SEM results showed that after deposition, each Cu nanorod has been covered by a layer of TiO2 gel, forming a core-shell structure. The effects of Cu nanorod arrays on the morphology and the electrochemical property of the TiO2 deposits were discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bruce, P.G., Scrosati, B., and Tarascon, J.M., Angew. Chem. Int. Ed. 47, 2930 (2008).Google Scholar
2. Li, J., Tang, Z., and Zhang, Z., Electrochem. Comm. 7, 62 (2005).Google Scholar
3. Bruce, P.G., Chem. Commun. 19, 1817 (1997).Google Scholar
4. Subramanian, V., Karki, A., Gnanasekar, K.I., Eddy, F. P. and Rambabu, B., J. Power Sources 159, 186 (2006).Google Scholar
5. Hibino, M., Abe, K., Mochizuki, M. and Miyayama, M., J. Power Sources 126, 139 (2004).Google Scholar
6. Wagemaker, M., Kentgens, A.P.M. and Mulder, F.M., Nature 418, 397 (2002).Google Scholar
7. Zhou, Y.K., Cao, L., Zhang, F. B. and Li, H.L., J. Electrochemical Society 150, A1246 (2003).Google Scholar
8. Guerfi, A., Charest, P., Kinoshita, K., Perrier, M. and Zaghib, K., J. Power Sources 126, 163 (2004).Google Scholar
9. Armstrong, A. R., Armstrong, G., Canales, J. and Bruce, P.G., J. Power Sources 146, 501 (2005).Google Scholar
10. Besenhard, J. O., Yang, J., and Winter, M., J. Power Sources 68, 87 (1997).Google Scholar
11. Gnanaraj, J.S., DiCarlo, J.F., Duan, H., Liang, J., Thompson, R.W., 10th Power Source R&D Symposium, Williamsburg, VA, 2007.Google Scholar
12. Duan, H., Gnanaraj, J., Chen, X., Li, B., and Liang, J., J. Power Sources 185, 512 (2008).Google Scholar
13. Chen, X., Duan, H., Zhou, Z., Liang, J., Gnanaraj, J., Nanotechnology 19, 365306 (2008).Google Scholar
14. Karuppuchamy, S., Nonomura, K., Yoshida, T., Sugiura, T., and Minoura, H., Solid State Ionics 151, 19 (2002).Google Scholar
15. Sankapal, B.R., Sartale, S.D, Lux-Steiner, M.C., and Ennaoui, A., C.R. Chimie 9, 702 (2006).Google Scholar
16. Georgieva, J., Armyanov, S., Valova, E., Poulios, I., Sotiropoulos, S., Electrochem. Acta. 51, 2076 (2006).Google Scholar
17. Zhitomirski, I., Gal-Or, L., Khon, A. and Spang, M.D., J. Mater. Sci. 32, 803 (1997).Google Scholar
18. Zhitomirski, I. and Gal-Or, L., J. Eur. Ceram. Soc. 16, 819 (1996).Google Scholar
19. Liang, J., Chik, H., and Xu, J., IEEE J. Sel. Top. Quantum Electron. 8, 998 (2002).Google Scholar
20. Chik, H., Liang, J., Cloutier, S.G., Koukli, N., and Xu, J.M., Appl. Phys. Lett. 84, 3376 (2004).Google Scholar