Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T19:38:21.339Z Has data issue: false hasContentIssue false

Electrochemical Li Insertion in Lamellar (Birnessite) and Tunnel Manganese Oxides (Todorokite)

Published online by Cambridge University Press:  10 February 2011

M. J. Duncan
Affiliation:
University of Waterloo, Department of Chemistry, Waterloo, Ontario Canada N2L 3G1; [email protected]
F. Leroux
Affiliation:
University of Waterloo, Department of Chemistry, Waterloo, Ontario Canada N2L 3G1; [email protected]
L. F. Nazar
Affiliation:
University of Waterloo, Department of Chemistry, Waterloo, Ontario Canada N2L 3G1; [email protected]
Get access

Abstract

A comparison of Li insertion in manganese oxide phases with a tunnel (todorokite) framework, its two-dimensional layered precursor (birnessite/buserite), and Li-exchanged materials are presented. The results outline the effect of the MnO6 octahedral arrangement and framework composition on the electrochemical response. The interlayer cations in the lamellar materials are exchangeable for Li, giving rise to a lithiated birnessite that displays a sustainable capacity of 125 mAh/g. For todorokite, molten salt exchange using LiNO3 results in displacement of water from the tunnels, and incorporation of additional Li into the structure. Some of this Li is extractable during charge, resulting in a reversible capacity of 172 mAh/g in the voltage window 4.2–2.0V.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bach, S., Pereira-Ramos, J.P., Baffier, N., and Messina, R., Electrochimica Acta, 36, 1595 (1991);10.1016/0013-4686(91)85012-VGoogle Scholar
Le Goff, P., Baffier, N., Bach, S., Pereira-Ramos, J.P., and Messina, R., Solid State Ionics, 61, 309 (1993);10.1016/0167-2738(93)90397-LGoogle Scholar
Strobel, P. and Mouget, C., Mat. Res. Bull., 28, 93 (1993);10.1016/0025-5408(93)90076-PGoogle Scholar
Le Cras, F., Rohs, S., Anne, M., and Strobel, P., J. Power Sources, 54, 319 (1995);10.1016/0378-7753(94)02092-HGoogle Scholar
Bach, S., Pereira-Ramos, J.P., and Baffier, N., J. Electrochem. Soc., 143, 3429 (1996).10.1149/1.1837232Google Scholar
2. Doeff, M.M., Richardson, T.J., and Kepley, L., J. Electrochem. Soc., 143, 2507 (1996).10.1149/1.1837039Google Scholar
3. Ohzuku, T., Kitagawa, M., and Hirai, T., J. Electrochem. Soc., 138, 360 (1991);10.1149/1.2085589Google Scholar
Rossouw, M.H., Liles, D.C., Thackeray, M.M., and David, W.I.F., Mat. Res. Bull., 27, 221 (1997);10.1016/0025-5408(92)90216-MGoogle Scholar
Feng, Q., Kanoh, H., Ooi, K., Tani, M., and Nakacho, Y., J. Electrochem. Soc., 141, L135 (1994);10.1149/1.2059258Google Scholar
Bach, S., Pereira-Ramos, J.P., and Baffier, N., Solid State Ionics, 80, 151 (1995).10.1016/0167-2738(95)00133-QGoogle Scholar
4. Golden, D.C., Chen, C.C., and Dixon, J.B., Science, 231, 717 (1986).10.1126/science.231.4739.717Google Scholar
5. Shen, Y. F., Zerger, R.P., DeGuzman, R.N., Suib, S.L., McCurdy, L., Potter, D.I., and O'Young, C. L. Science, 260, 511 (1993).10.1126/science.260.5107.511Google Scholar
6. Vetter, K.J. and Jaeger, N., Electrochimica. Acta, 11, 401 (1996).10.1016/0013-4686(66)80018-XGoogle Scholar