Article contents
Electro- and Photoluminescence from Ultrathin SImGEn Superlattices
Published online by Cambridge University Press: 15 February 2011
Abstract
P-i-n doped short-period SimGen strained layer superlattices (SLS) are grown on (100) silicon substrates by low temperature molecular beam epitaxy (300C°<∼Tg<∼400C°). The SLS's are grown with period lengths around 10 monolayers (ML) to a thickness of 250nm on a rather thin (50nm) homogeneous Si1−ybGeyb alloy buffer layer serving as strain symmetrizing substrate. Photoluminescence at T=5K is observed for various SimGen SLS samples, the strongest signal was found for a Si5 Ge5 SLS. Samples with identical SLS's but different buffer layer composition and thicknesses are grown to study the influence of strain on the PL. Electroluminescence (EL) at the same energy range is observed from mounted SimGen SLS mesa and waveguide diodes up to T=130K – for the first time reported in strain symmetrized short-period SimGen SLS. The intensity and peak positon of the EL signal was found to be dependent on the injected electrical power.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1992
References
REFERENCES
- 7
- Cited by