Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-24T12:22:17.588Z Has data issue: false hasContentIssue false

Electrically switchable reflection gratings in polymer dispersed liquid crystals

Published online by Cambridge University Press:  10 February 2011

L. V. Natarajan
Affiliation:
Science Applications International Corporation, Dayton, OH 45431
R. L. Sutherland
Affiliation:
Science Applications International Corporation, Dayton, OH 45431
V. P. Tondiglia
Affiliation:
Science Applications International Corporation, Dayton, OH 45431
S. Siwecki
Affiliation:
Science Applications International Corporation, Dayton, OH 45431
R. Pogue
Affiliation:
Science Applications International Corporation, Dayton, OH 45431
M. Schmitt
Affiliation:
Science Applications International Corporation, Dayton, OH 45431
D. Brandelik
Affiliation:
Science Applications International Corporation, Dayton, OH 45431
B. Epling
Affiliation:
Science Applications International Corporation, Dayton, OH 45431
G. Berman
Affiliation:
Science Applications International Corporation, Dayton, OH 45431
C. Wendel
Affiliation:
Science Applications International Corporation, Dayton, OH 45431
M. Ritter
Affiliation:
Science Applications International Corporation, Dayton, OH 45431
M. Stallings
Affiliation:
Science Applications International Corporation, Dayton, OH 45431
T. J. Bunning
Affiliation:
MLPJ/AFRL, WPAFB, OH 45433
Get access

Abstract

Electrically switchable volume reflection holograms were written by inhomogeneous illumination of a prepolymer syrup containing a nematic liquid crystal and a multifunctional acrylate monomer. Switchable holograms are diffractive optics structures and the diffraction efficiency can be controlled by the application of an electric field. Reflection gratings with grating spacing varying between 0.16-0.27 µm were made during the phase separation of liquid crystals from the fast curing prepolymer syrup. The reflection efficiency of the holograms were electrically modulated with the applied field of ∼10-15V/µm. Real time study of the grating formation revealed that the maximum efficiency is reached in ∼15 seconds. The shrinkage of the host polymer during grating formation resulted in the blue shift of the reflection notch. The response time of the grating in an electric field is ∼50 µs. Low voltage scanning electron microscope studies showed the presence of discrete nematic droplet domains of sizes 30-60 nm in liquid crystal rich region.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Sutherland, R. L., Natarajan, L. V., Tondiglia, V. P., and Bunning, T. J., Chem. Mater. 5, pp. 15331538 (1993).Google Scholar
2 Sutherland, R. L., Natarajan, L. V., Tondiglia, V. P., Bunning, T. J., and Adams, W. W., Proc. SPIE, Diffractive and Holographic Optics Technology, Eds. Cindrich, I. and Lee, S. H., Vol. 2152, pp. 303312, 1994.Google Scholar
3 Sutherland, R. L., Tondiglia, V. P., Natarajan, L. V., Bunning, T. J., and Adams, W. W., Appl. Phys. Lett. 64, pp. 10741076 (1994).Google Scholar
4 Sutherland, R. L., Natarajan, L. V., Tondiglia, V. P., Bunning, T. J., and Adams, W. W., Proc. SPIE, Diffractive and Holographic Optics Technology II, Eds. Cindrich, I. and Lee, S. H., Vol. 2404, pp. 132143, 1995.Google Scholar
5 Tondiglia, V. P., Natarajan, L. V., Sutherland, R. L., Bunning, T. J., and Adams, W. W., Opt. Lett. 20, pp. 13251327 (1995).Google Scholar
6 Sutherland, R. L., Natarajan, L. V., Tondiglia, V. P., Bunning, T. J., and Adams, W. W., Proc. SPIE, Diffractive and Holographic Optics Technology III, Eds. Cindrich, I. and Lee, S. H., Vol. 2689, pp. 158169, 1996.Google Scholar
7 Sutherland, R. L., Natarajan, L. V., Tondiglia, V. P., and Bunning, T. J., Proc. SPIE, Diffractive and Holographic Optics Technology IV, Eds. Cindrich, I. and Lee, S. H., Vol. 3010, pp. 142149, 1997.Google Scholar
8 Tanaka, K., Kato, K., Tsuru, S., and Sakai, S., J. Soc. Inf. Disp., 2, 37(1994)Google Scholar
9 Crawford, G. P., Fiske, T. O., and Silverstein, L. S., Digest of technical papers 1996, Society for the information display, Anaheim, p. 127, 1998.Google Scholar
10 Kogelnik, H., Bell Syst. Tech.J. 48, 2909, 1969.Google Scholar
11 Bunning, T. J., Natarajan, L. V., Tondiglia, V. P., Dougherty, G. and Sutherland, R. L., J. Poly.Sci, Part B., 35, pp 28252833 (1997).Google Scholar
12 Masso, J. D. and Ning, X., SPIE Proceedings, Vol. 2405, pp 3755.Google Scholar
13 Wu, B.G., Erdmann, J. H., and Doane, J. W., Liq.Cryst., 5, 1453(1989).Google Scholar
14 Iannacchione, G. S., Finotello, D., Natarajan, L. V., Sutherland, R. L., Tondiglia, V. P., Bunning, T. J., and Adams, W. W., Europhys. Lett, 36, pp. 425–30(1996).Google Scholar