Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T15:35:55.856Z Has data issue: false hasContentIssue false

Electrical Transport and Defect Spectroscopy of Free Standing Single Crystal CVD Diamond Prepared from Methane Rich Mixtures

Published online by Cambridge University Press:  01 February 2011

Andrey Bogdan
Affiliation:
[email protected], CEA Saclay, DRT, Bat 451, p. 84, Gif Sur Yvette, N/A, France, +33169088704
Ganna Bogdan
Affiliation:
[email protected], Hasselt University, Institute for Materials Research (IMO), Wetenschapspark 1, Diepenbeek, B-3590, Belgium
Ward De Ceuninck
Affiliation:
[email protected], Hasselt University, Institute for Materials Research (IMO), Wetenschapspark 1, Diepenbeek, B-3590, Belgium
Ken Haenen
Affiliation:
[email protected], Hasselt University, Institute for Materials Research (IMO), Wetenschapspark 1, Diepenbeek, B-3590, Belgium
Milos Nesladek
Affiliation:
[email protected], Hasselt University, Institute for Materials Research (IMO), Wetenschapspark 1, Diepenbeek, B-3590, Belgium
Get access

Abstract

Transient photocurrent measurements in the Time-of-Flight (TOF) configuration were used to study the electrical transport in single crystalline diamond layers using a Nd:YAG - pumped OPO (2.7 nsec) laser pulse excitation source working at a wavelength of ∼ 218 nm. The amount of collected charge was measured and the hole and electron drift mobilities were determined at room temperature for natural IIa diamond and intrinsic single crystalline CVD diamond samples. A variation of the laser intensity over several orders of magnitude enabled switching between the so called “small signal TOF” and “space charge limited current” (SCLC) modes. Experiments were done using electrical fields in the range of 0.05-1.2 V/μm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Isberg, J., Hammersberg, J., Johansson, E., Wikstrom, T., Twitchen, D. J., Whitehead, A. J., Coe, S. E., Scarsbrook, G. A., Science 297, 16701672 (2002).10.1126/science.1074374Google Scholar
2. Fink, J., Lodomez, P., Kruger, H., Pernegger, H., Weilhammer, P., Wermes, N., Nuclear Instruments and Methods in Physics Research A 565, 227233 (2006)10.1016/j.nima.2006.05.003Google Scholar
3. Pomorski, M., Berdermann, E., Ciobanu, M., Martemyianov, A., Moritz, P., Rebisz, M. and Marczewska, B., Phys. stat. sol. (a) 202, No. 11, 21992205 (2005)10.1002/pssa.200561929Google Scholar
4. Bogdan, G., Nesladek, M., D'Haen, J., Haenen, K., D'Olieslaeger, M., Diam. Relat. Mater. 15, 508512 (2006).10.1016/j.diamond.2005.10.059Google Scholar
5. Nebel, C. E., Munz, J., Stutzmann, M., Zachai, R., Guttler, H., Phys. Rev. B 55, 9786 (1997).10.1103/PhysRevB.55.9786Google Scholar
6. Nava, F., Canali, C., Jacoboni, C., Reggiani, L., Kozlov, S. F., Solid State Commun. 33, 475 (1980).10.1016/0038-1098(80)90447-0Google Scholar
7. Reggiani, L., Bosi, S., Canali, C., Nava, F., Kozlov, S. F., Phys. Rev. B 23, 3050 (1981).10.1103/PhysRevB.23.3050Google Scholar
8. Pivaskas, A., Osterbaka, R., Juska, G., Arlauskas, K., Stubb, H., Sinthetic Metals. 155, 242245 (2005).Google Scholar
9. Isberg, J., Hammersberg, J., Twitchen, D.J., Whitehead, A.J., Diam. Relat. Mater. 13, 872875 (2004).10.1016/j.diamond.2003.11.065Google Scholar
10. Isberg, J., Hammersberg, J., Bernhoff, H., Twitchen, D.J., Whitehead, A.J., Diam. Relat. Mater. 13, 320 (2004).10.1016/j.diamond.2003.10.017Google Scholar
11. Pomorski, M., Berdermann, E., Caragheorgheopol, A., Ciobanu, M., Kiš, M., Martemiyanov, A., Nebel, C., Moritz, P., Phys. Stat. Sol. (a) 203, 12, 31523160 (2006).10.1002/pssa.200671127Google Scholar