Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T01:40:59.819Z Has data issue: false hasContentIssue false

Electrical Study of Metal/Gaas Interfaces*

Published online by Cambridge University Press:  25 February 2011

W.E. Spicer
Affiliation:
Stanford Electronics Laboratory, Stanford University, Stanford, CA 94303
E.R. Weber
Affiliation:
Center for Advanced Materials, Lawrence Berkeley Laboratory, Berkeley, CA 94720
Z. Liliental-Weber
Affiliation:
Center for Advanced Materials, Lawrence Berkeley Laboratory, Berkeley, CA 94720
Get access

Extract

We have carried out a systematic study of the electrical properties of Schottky barriers formed on atomically-clean and contaminated n-type and p-type GaAs surfaces[1-11]. Diodes were fabricated by in-situ deposition on clean GaAs (110) surfaces prepared by cleavage in ultrahigh vacuum and on contaminated surfaces prepared by cleavage and exposure to the atmosphere[1-4]. The consistent and reproducible barrier height determinations from the electrical measurements of unannealed and annealed diodes, when combined with results of transmission electron microscopy (TEM)[5,6] and surface sensitive studies on identically prepared samples[7,8], are found to be a particularly critical test of models of Schottky barrier formation. A strong correlation between annealing-induced changes in the Schottky barrier height and the stoichiometry of the near interfacial GaAs is found.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

**

Present address: Conductus Inc., Sunnyvale, CA 94086

*

This article is an extended abstract which summarizes references 1-11.

References

1. Annealing of Intimate Ag, Al, andAu-GaAs Schottky Barriers, Newman, N., Chin, K. K., Petro, W. G., Kendelewicz, T., Williams, M. D., McCants, C. E., and Spicer, W. E., J. Vac. Sci. Technol. A3, 996 (1985).Google Scholar
2. Schottky and “Ohmic” Contacts on GaAs, Microscopicand Electrical Investigation, Liliental-Weber, Z., Gronsky, R., Washburn, J., Newman, N., Spicer, W.E., and Weber, E.R., J. Vac. Sci. Technol. B4, 912 (1986).Google Scholar
3. Electrical Study of Schottky Barriers on Atomically Clean GaAs (110) Surfaces, Newman, N., Schilfgaarde, M. van, Kendelewicz, T., Williams, M.D., and Spicer, W.E., Phys. Rev. B33, 1146 (1986).CrossRefGoogle Scholar
4. Observation of StoichiometryChanges Beneath Metal Contacts on GaAs Liliental-Weber, Z., Weber, E.R., Newman, N., Spicer, W.E., Gronsky, R., and Washburn, J., in: “Defects in Semiconductors,” Ed. Bardeleben, H.J. van, Materials Science Forum vol. 10–12, (Trans. Tech. Publications, Switzerland 1986), p. 1223.Google Scholar
5. Mechanism for Annealing-InducedChanges in the Electrical CharacteristicsofAl/GaAs and Al/lnP Schottky Contacts, Newman, N., Spicer, W.E., and Weber, E.R., J. Vac. Sci. Technol. B5, 1020 (1987).CrossRefGoogle Scholar
6. Chemical and ElectricalProperties at the Annealed Ti/GaAs (110) Interface, Cants, C.E. Mc, Kendelewicz, T., Mahowald, P.H., Bertness, K.A., Williams, M.D., Newman, N., Lindau, I. and Spicer, W.E., J. Vac. Sci. Technol. A6, 1466 (1988).Google Scholar
7.Analysis of Thin Film Systems Using NonresonantMultiphoton Ionization,Pallix, J. B., Becker, C.H. and Newman, N., J. Vac. Sci. Technol. A6, 1049 (1988).Google Scholar
8.The Advanced Unified Defect Model for Schottky BarrierFormation, Spicer, W.E., Liliental-Weber, Z., Weber, E.R., Newman, N., Kendelewicz, T., Cao, R., McCants, C., J. Vac. Sci. Technol. B6, 1245 (1988).Google Scholar
9.The Advanced Unified Defect Model and its Applications,Spicer, W.E., Kendelewicz, T., Cao, R., McCants, C., Miyano, K., Lindau, I., Liliental-Weber, Z. and Weber, E.R., Appl. Surf. Sci. 33/34, 1009 (1988).CrossRefGoogle Scholar
10. Schottky Barmer Instabilities Due to Contamination, Newman, N., Liliental-Weber, Z., Weber, E.R., Washburn, J., and Spicer, W.E., Appl. Phys. Lett. 53, 145 (1988).Google Scholar
11. The Mechanism of Fermi-level Pinningat Schottky Contactson GaAs, Weber, E.R., Spicer, W.E., Newman, N., Liliental-Weber, Z. and Kendelewicz, T., Proc. of the 19th Internat. Conf. on the Physics of Semiconductors, Warsaw, 1988, in press.Google Scholar
12.See, for example, Takano, Y., Ishiba, T., Fujisaki, Y., Nakagawa, J. and Fukuda, T., in: “Semi-Insulating III-V Materials,” Eds. Kukimoto, H. and Miyazawa, S. (OHMSHA 1986), p. 169.Google Scholar
13. Bartels, F., Clemens, H.J. and Mönch, W., Physica 117/118B, 801 (1983).Google Scholar
14. Stirland, D. J., Brozel, M. R. and Grant, I., Appl. Phys. Lett. 46, 1066 (1985).Google Scholar
15.See for example, Stiles, K. and Kahn, A., Phys. Rev. Lett. 60, 440 (1988), and R. Cao, K. Miyano, T. Kendelewicz, I. Lindau and W.E. Spicer, Appl. Phys. Lett. 53, 210 (1988).CrossRefGoogle Scholar