Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T05:35:48.788Z Has data issue: false hasContentIssue false

Electrical Resistance Change with Crystallization in Si-Te Amorphous Thin Films

Published online by Cambridge University Press:  01 February 2011

Yuta Saito
Affiliation:
[email protected], Tohoku University, Department of Materials Science, Sendai, Japan
Yuji Sutou
Affiliation:
[email protected], Tohoku University, Department of Materials Science, Sendai, Japan
Junichi Koike
Affiliation:
[email protected], Tohoku University, Department of Materials Science, Sendai, Japan
Get access

Abstract

The electrical resistance change of amorphous SixTe100-x (x: 10-23) films during heating was investigated by a two-point probe method. The SixTe100-x films showed two-stage crystallization processes. The film was firstly crystallized to Te and subsequently crystallized to Si2Te3 with an electrical resistance drop. The first crystallization temperature Tx1st slightly increased with increasing Si content, while the second crystallization temperature Tx2nd was independent on the composition and was a constant temperature of 310 °C. In all films, the electrical resistance once increased in the temperature range from 250 to 295 °C before the crystallization of the Si2Te3. This temporal resistance increase could be explained by considering a formation of high-resistivity Si-rich amorphous phase.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Ha, Y. H. Yi, J. H. Horii, H. Park, J. H. Joo, S. H. Park, S. O. Chung, U. -I. Moon, J. T. Symp. on VLSI Tech. Dig. 175 (2003).Google Scholar
2 Pellizzer, F. Pirovano, A. Ottogalli, F. Magistretti, M. Scaravaggi, M. Zuliani, P. Tosi, M. Ben-venuti, A., Besana, P. Cadeo, S. Marangon, T. Morandi, R. Piva, R. Spandre, A. Zonca, R. Mod-elli, A., Varesi, E. Lowrey, T. Lacaita, A. Casagrande, G. Cappelletti, P. Bez, R. Symp. on VLSI Tech. Dig. 18 (2004).Google Scholar
3 Lai, Y. F. Qiao, B. W. Feng, J. Le, Y. La, L. Z. Lin, Y. Y. Tang, T. A. Cai, B. C. Chen, B. M. Electron, J.. Mater. 34, 176 (2005).Google Scholar
4 Chen, Y. C. Rettner, C. T. Raoux, S. Burr, G. W. Chen, S. H. Shelby, R. M. Salinga, M. Risk, W. P. Happ, T. D. McClelland, G. M. Breitwisch, M. Schrott, A. Philipp, J. B. Lee, M. H. Cheek, R. Nirschl, T. Lamorey, M. Chen, C. F. Joseph, E. Zaidi, S. Yee, B. Lung, H. L. Bergmann, R. and Lam, C. Proc. 2006 IEDM, 803 (2006).Google Scholar
5 Kang, M. J. Choi, S. Y. Wamwangi, D. Wang, K. Steimer, C. and Wuttig, M. J. Appl. Phys. 98, 014904 (2005).Google Scholar
6 Lankhorst, M. H. R. Ketelaars, B. W. S. M. M. and Wolters, R. A. M. Nature Mater. 4, 347 (2005).Google Scholar
7 Murthy, C. N. Ganesan, V. and Asokan, S. Appl. Phys. A 81, 939 (2005).Google Scholar
8 Zhang, S. N. Zhu, T. J. and Zhao, X. B. Physica B 403, 3459 (2008).Google Scholar
9 Bailey, L. G. J. Phys. Chem. Solids. 27, 1593 (1966).Google Scholar
10 Yamada, N. Matsunaga, T. J. Appl. Phys. 88, 7020 (2000).Google Scholar
11 Matsunaga, T. Yamada, N. Kubota, Y. Acta Crystallographica B: Structural Science, B60, 685 (2004).Google Scholar
12 Kissinger, Homer E. Anal. Chem. 29, 1702 (1957).Google Scholar
13 Friedrich, I. Weidenhof, V. Njoroge, W. Wuttig, M. J. Appl. Phys. 87, 4130 (2000).Google Scholar