Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T01:31:27.806Z Has data issue: false hasContentIssue false

Electrical properties of zinc oxide thin films deposited using high-energy H2O generated from a catalytic reaction on platinum nanoparticles

Published online by Cambridge University Press:  27 February 2013

Kanji Yasui
Affiliation:
Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
Naoya Yamaguchi
Affiliation:
Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
Eichi Nagatomi
Affiliation:
Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
Souichi Satomoto
Affiliation:
Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
Takahiro Kato
Affiliation:
Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
Get access

Abstract

Zinc oxide (ZnO) with excellent crystallinity and large electron mobility was grown on aplane (11-20) sapphire (a-Al2O3) substrates by a new chemical vapor deposition method via the reaction between dimethylzinc (DMZn) and high-energy H2O produced by a Pt-catalyzed H2-O2 reaction. The electron mobility at room temperature increased from 30 cm2/Vs to 189 cm2/Vs with increasing film thickness from 0.1 μm to approximately 3 μm. Electron mobility increased significantly with decreasing temperature to approximately 110 – 150 K, but decreased at temperatures less than 100 K for films greater than 500 nm in thickness. On the other hand, the mobility hardly changed with temperature for films lesser than 500 nm in thickness. Based on the dependence of the electrical properties on the film thickness, the ZnO films grown on a-Al2O3 substrates are considered to consist of an interfacial layer with a high defect density (degenerate layer) generated due to a large lattice mismatch between ZnO and Al2O3 substrates and an upper layer with a low defect density.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hickernell, F. S., Proc. IEEE, 64, 631 (1976).CrossRefGoogle Scholar
Pizzini, S., Butta, N., Narducci, D., and Palladino, M., J. Electrochem. Soc., 136, 1945 (1989).CrossRefGoogle Scholar
Jeong, I. S., Kim, J. H., and Im, S., Appl. Phys. Lett., 83, 2946 (2003).CrossRefGoogle Scholar
Minami, T., Semicond. Sci. Technol., 20, S35 (2005).CrossRefGoogle Scholar
Meyer, B. K., Alves, H., Hofmann, D. M., Kriegseis, W., Forster, D., Bertram, F., Christein, J., Hoffmann, A., Straßburg, M., Dworzak, M., Haboeck, U., and Rodina, A. V., Phys. Stat. Sol. (b), 241, 231 (2004).CrossRefGoogle Scholar
Tsukazaki, A., Ohtomo, A., Onuma, T., Ohtani, M., Makino, T., Sumiya, M., Ohtani, K., Chichibu, S., Fuke, S., Segawa, Y., Ohno, H., Koinuma, H., and Kawasaki, M., Nature Materials, 4, 42 (2005).CrossRefGoogle Scholar
Kaidashev, E. M., Lorenz, M., von Wenckstern, H., Rahm, A., Semmelhack, H. C., Han, K. -H., Benndorf, G., Bundesmann, C., Hochmuth, H., and Grundmann, M., Appl. Phys. Lett., 82, 3901 (2003).CrossRefGoogle Scholar
Fons, P., Iwata, K., Niki, S., Yamada, A., and Matsubara, K., J. Cryst. Growth, 201202, 627 (1999).CrossRefGoogle Scholar
Miyamoto, K., Sano, M., Kato, H., and Yao, T., J. Cryst. Growth, 265, 34 (2004).CrossRefGoogle Scholar
Ohtomo, A. and Tsukazaki, A., Semicond. Sci. Technol., 20, S1 (2005).CrossRefGoogle Scholar
Lau, C. K., Tiku, S. K., and Lakin, K. M., J. Electrochem. Soc., 127, 1843 (1980).CrossRefGoogle Scholar
Dai, J., Jiang, F., Pu, Y., Wang, L., Fang, W., and Li, F., Appl. Phys. A, 89, 645 (2007).CrossRefGoogle Scholar
Yasui, K., Miura, H., and Nishiyama, H., MRS Symp. Proc., 1315, 21 (2011).CrossRefGoogle Scholar
Roro, K. T., Kassier, G. H., Dangbegnon, J. K., Sivaraya, S., Westraadt, J. E., Neethling, J. H., Leitch, A. W. R., and Botha, J. R., Semicond. Sci. Technol., 23, 055012 (2008).CrossRefGoogle Scholar
Look, D. C. and Molnar, R. J., Appl. Phys. Lett., 70, 3377 (1997).CrossRefGoogle Scholar