Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T01:56:06.205Z Has data issue: false hasContentIssue false

Electrical Properties of Quantum Wells in III-NITRIDE Alloys and the Role of Defects

Published online by Cambridge University Press:  19 November 2013

Daniela Cavalcoli
Affiliation:
Physics and Astronomy Department, University of Bologna, Viale C Berti Pichat 6/II, I-40127 Bologna, Italy
Albert Minj
Affiliation:
Physics and Astronomy Department, University of Bologna, Viale C Berti Pichat 6/II, I-40127 Bologna, Italy
Saurabh Pandey
Affiliation:
Physics and Astronomy Department, University of Bologna, Viale C Berti Pichat 6/II, I-40127 Bologna, Italy
Beatrice Fraboni
Affiliation:
Physics and Astronomy Department, University of Bologna, Viale C Berti Pichat 6/II, I-40127 Bologna, Italy
Anna Cavallini
Affiliation:
Physics and Astronomy Department, University of Bologna, Viale C Berti Pichat 6/II, I-40127 Bologna, Italy
Get access

Abstract

III-nitrides (III-Ns) semiconductors and their alloys have shown in the last few years high potential for interesting applications in photonics and electronics. III-Ns based heterostructures (HS) have been under wide investigation for different applications such as high frequency transistors, ultraviolet photodetector, light emitters etc. In the present contribution a III-Ns based heterostructure, in particular the nearly lattice matched Al1-xInxN/AlN/GaN HS will be discussed. The formation of the two dimensional electron gas (2DEG), its origin, its electrical and optical properties, the confined subband states in the well and its effect on the conduction mechanisms have been studied. Moreover, extended defects and their effect on the degradation phenomena of the 2DEG have been analyzed.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kehagias, Th, et al. . Appl. Phys. Lett. 95, 071905 (2009).CrossRefGoogle Scholar
Minj, A., Cavalcoli, D., Cavallini, A., Appl. Phys. Lett., 97, 132114 (2010).CrossRefGoogle Scholar
Minj, A., Cavalcoli, D., Pandey, S., Fraboni, B., Cavallini, A., Brazzini, T., Calle, F. Script Mater, 66 327 (2012).CrossRefGoogle Scholar
Pandey, S., Cavalcoli, D., Fraboni, B., Cavallini, A., Brazzini, T., and Calle, F. Appl. Phys. Lett. 100, 152116 (2012).CrossRefGoogle Scholar
Ponce, F. A., Ann. Phys. (Berlin), 1 – 2, 523 75 (2011)Google Scholar
Look, D. C. and Sizelove, J. R., Phys. Rev. Lett. 82, 1237 (1999).CrossRefGoogle Scholar
Gonschorek, M, et al. International Journal of Microwave and Wireless Technologies,, 2(1), 1320 (2010).CrossRefGoogle Scholar
Chichibu, S. F. et al. , Nature Materials 810-816 (2006)Google Scholar
Moustakas, T.D Phys. Status Solidi A 210, 1, 169174 (2013)CrossRefGoogle Scholar
Vilalta-Clemente, A, Poisson, M-A, Behmenburg, H, Giesen, C, Heuken, M and Ruterana, Phys. Status Solidi a 207 1105 (2010)CrossRefGoogle Scholar
Pandey, S., Cavalcoli, D., Minj, A., Fraboni, B., Cavallini, A., Skuridina, D., Vogt, P., Kneissl, M. Acta Materialia 60 31763180 (2012)CrossRefGoogle Scholar
Pandey, S, Fraboni, B, Cavalcoli, D, Minj, A, Cavallini, A - Applied Physics Letters, 99, 012111 (2011)Google Scholar
Cavalcoli, D, Pandey, S, Fraboni, B, Cavallini, A Appl Phys Lett 98 142111–142111(2011).Google Scholar
Pandey, S., Cavalcoli, D., Minj, A., Fraboni, B., Cavallini, A. et al. . J. Appl Phys. 112, 123721 (2012)CrossRefGoogle Scholar
Minj, A., Cavalcoli, D and Cavallini, Anna Nanotechnology 23 (2012) 115701 Google Scholar
Smorchkova, I. P. et al. Appl. Phys. 86, 4520 (1999)CrossRefGoogle Scholar
Gonschorek, M. et al. J. of Appl Phys 103, 093714 (2008)Google Scholar
Rizzi, A, et al. Appl. Phys. A 87, 505509 (2007)CrossRefGoogle Scholar
Koley, G., Spencer, M. G., Appl. Phys. Lett. 86, 042107 (2005).CrossRefGoogle Scholar
Miao, M. S., Janotti, A., Van de Walle, C. G., Phys. Rev. B 80, 155319 (2009).CrossRefGoogle Scholar
Liu, B. et al. Appl. Phys. Lett. 97, 262111 (2010)CrossRefGoogle ScholarPubMed
Cao, Y. and Jena, D., Appl. Phys. Lett. 97, 222116 (2010)CrossRefGoogle Scholar