Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T23:44:22.965Z Has data issue: false hasContentIssue false

Electrical Properties of PZT Thin Film Capacitors with Novel Pt-Ir Based Electrode Barriers for Nonvolatile Memories

Published online by Cambridge University Press:  10 February 2011

Chandra S. Desu
Affiliation:
Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA 24061-0237
Ramakrishna Vedula
Affiliation:
Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA 24061-0237
Kwang B. Lee
Affiliation:
Department of Physics, Sangji University, Wonju, Kangwondo 220-702, Korea
Seshu B. Desu
Affiliation:
Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA 24061-0237
Get access

Abstract

A new electrode barrier structure based on noble metals Pt and Ir alloys and their oxides was proposed for the integration of PZT capacitors into high density nonvolatile memories. The proposed PtIrOx/PtIr/PtIrOx structure with Pt rich compositions (∼90%) is an excellent conducting electrode for the ferroelectric capacitor and a very good diffusion barrier for species like oxygen and Si. These structures are thermally stable up to the PZT processing temperatures of 650°C. PZT deposited on these electrodes crystallized predominantly in pervoskite phase. The test capacitors showed well saturated hysteresis loops with Pr and Ec of 21.3 µC/cm2 and 43 kV/cm, respectively. An extremely low polarization fatigue of 3% after 1× 1011 repetitions and leakage currents close to those on Pt were observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Scott, J. F. and Araujo, C. A., Science 246, p. 1,400 (1989).Google Scholar
2. Moazami, R., Hu, C. and Shepherd, W. H., IEEE Trans. Electron Devices 39, p. 2,044(1992).Google Scholar
3. Evans, J.T. and Womack, R., IEEE Solid-State Circuit 23, p. 1,171 (1988).Google Scholar
4. Aoki, K., Fukunda, Y., Numata, K. and Nishimura, A., Jpn. J. Appl. Phys. 34, p. 5,250 (1995).Google Scholar
5. Nakamura, T., Nakao, Y., Kamisawa, A. and Takasu, H., Appl. Phys. Lett. 65, p. 1,522 (1994).Google Scholar
6. Al-Shareef, H. N., Auciello, O. and Kingon, A. I., J. Appl. Phys. 77, p. 2,146 (1995).Google Scholar
7. Ramesh, R., Chen, W. K., Wilkens, B., Gilchriest, H., Sands, T., Tarascon, J. M., Kermidas, V. G., Fork, D. K., Lee, J. and Safari, A., Appl. Phys Lett. 61, p. 1, 537 (1992).Google Scholar
8. Auciello, O., Al-Shareef, H. N., Gifford, K. D., Lichtenwalner, D. J., Dat, R., Bellur, K. R., Kingon, A. I. and Ramesh, R. in Epitaxial Oxide Thin Films, edited by Fork, D. K., Philips, J. M., Ramesh, R. and Wolf, R. M. (Mater. Res. Soc. Proc., 341,San Francisco, CA, 1994) pp.341346.Google Scholar
9. Bhatt, H.B., Desu, S. B., Vijay, D. P., Hwang, Y. S., Zhang, X., Nagata, M. and Grill, A., Appl. Phys. Lett. 71, p.719 (1997).Google Scholar
10. Song, Y., Zhu, Y., and Desu, S. B., Appl. Phys. Lett. 72, p. 2,686 (1998).Google Scholar
11. Stolichnov, I. and Tagantsev, A., J. Appl. Phys. 84, p. 3,216 (1998).Google Scholar