Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T15:53:38.508Z Has data issue: false hasContentIssue false

Electrical properties of MBE grown Si-doped AlxGa1−xN as a function of nominal Al mole fraction up to 0.5

Published online by Cambridge University Press:  21 March 2011

M. Ahoujja
Affiliation:
Air Force Institute of Technology, Wright-Patterson AFB, OH, USA
Y. K. Yeo
Affiliation:
Air Force Institute of Technology, Wright-Patterson AFB, OH, USA
R. L. Hengehold
Affiliation:
Air Force Institute of Technology, Wright-Patterson AFB, OH, USA
J. E. Van Nostrand
Affiliation:
Air Force Research Laboratory, Wright-Patterson AFB, OH, USA
Get access

Abstract

Hall-effect measurements were conducted on Si-doped AlxGa1−xN films grown on sapphire substrate by gas source molecular beam epitaxy. The Al mole fraction in the 1 [.proportional]m thick AlxGa1−xN was 0.0, 0.3, and 0.5, and the Si doping concentration was kept at a nominal value of 1018 cm−3. Variable temperature Hall-effect measurements reveal a presence of a highly degenerate n-type region at the AlxGa1−xN /sapphire interface. This degenerate interfacial layer dominates the electrical properties below 30 K and significantly affects the properties of the AlxGa1−xN layer. Thus, by using a two-layer conducting model, the carrier concentration and mobility of the AlxGa1−xN layer alone are obtained.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Egawa, T., Ishikawa, H., Umeno, M., and Jimbo, T., Appl. Phys. Lett. 76, 121 (2000)Google Scholar
2. Razeghi, M. and Rogalski, A., J. Appl. Phys. 79, 7433 (1996).Google Scholar
3. Monroy, E., Calle, F., Monoz, E., Omnes, F., Beaumont, B., Gibart, Pierre, Monoz, J. A., and Cusso, F., MRS Internet J. Nitride Semicond. Res. 3, 9 (1998).Google Scholar
4. Parish, G., Keller, S., Kozodoy, P., Ibbetson, J. P., Marchand, H., Fini, P. T., Fleischer, S. B., DenBaars, S. P., Mishra, U. K., and Tarsa, E. J., Appl. Phys. Lett. 75, 247 (1999).Google Scholar
5. Götz, W., Romano, L. T., Walker, J., Johnson, N. M., and Molnar, R. J., Appl. Phys. Lett. 72, 1214 (1998).Google Scholar
6. Look, D. C., Reynolds, D. C., Hemsky, J. W., Sizelove, J. R., Jones, R. L., and Molnar, R. J., Phys. Rev Lett. 79, 2273 (1997).Google Scholar
7. Look, D. C. and Molnar, R. J., Appl. Phys. Lett. 70, 3377 (1997).Google Scholar
8. Look, D. C., Electrical Characterization of GaAs Materials and Devices (Wiley, New York, 1989), p.116.Google Scholar
9. McFall, J. L., Hengehold, R. L., Yeo, Y. K., Nostrand, J. E. Van, and Saxler, A. W.. To be published in the Journal of Crystal Growth in 2001.Google Scholar
10. Xu, Z. Y., Kreismanis, V. G., and Tang, C. L., J. Appl. Phys. 54, 4536 (1983).Google Scholar
11. Goepfert, I. D., Schubert, E. F., Osinsky, A., Norris, P. E., and Faleev, N. N., J. Appl. Phys. 88, 2030 (2000).Google Scholar