Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T22:48:21.306Z Has data issue: false hasContentIssue false

Electrical Properties at Grain Boundaries Influenced by Cr3+ Diffusion in SnO2.ZnO.Nb2O5-Films Varistor Prepared by Electrophoresis Deposition

Published online by Cambridge University Press:  18 September 2014

Glauco M. M. M. Lustosa
Affiliation:
Instituto de Química - UNESP, Araraquara, SP, 14.800-900, Brazil
João Paulo C. Costa
Affiliation:
Centro Universitário de Araraquara - UNIARA, Araraquara, SP, 14.801-340, Brazil
Leinig A. Perazolli
Affiliation:
Instituto de Química - UNESP, Araraquara, SP, 14.800-900, Brazil
Maria A. Zaghete
Affiliation:
Instituto de Química - UNESP, Araraquara, SP, 14.800-900, Brazil
Get access

Abstract

SnO2-based varistors are strong candidates to replace the ZnO-based varistors due to ordering fewer additives to improve its electrical behavior as well as by showing similar nonlinear characteristics of ZnO varistors. In this work, SnO2-nanoparticles based-varistors with addition of 1.0 %mol of ZnO and 0.05 %mol of Nb2O5 were synthesized by chemical route. SnO2.ZnO.Nb2O5-films with 5 μm of thickness were obtained by electrophoretic deposition (EPD) of the nanoparticles on Si/Pt substrate from alcoholic suspension of SnO2-based powder. The sintering step was carried out in a microwave oven at 1000 °C for 40 minutes. Then, Cr3+ ions were deposited on the films surface by EPD after the sintering step. Each sample was submitted to different thermal treatments to improve the varistor behavior by diffusion of ions in the samples. The films showed a nonlinear coefficient (α) greater than 9, breakdown voltage (VR) around 60 V, low leakage current (IF ≈ 10-6 A), height potential barrier above 0.5 eV and grain boundary resistivity upward of 107 Ω.cm.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Glot, A. B., Gaponov, A. V., Sandoval-Gracía, A. P., Physica B 405 705 (2010).CrossRefGoogle Scholar
Wang, Y. J., Wang, J. F., Li, C. P., Chen, H. C., Su, W. B., Zhong, W. L., Zhang, P. L., Zhao, L. Y., J. Mater. Sci. Lett. 20 19 (2001).CrossRefGoogle Scholar
Santos, P.A., Maruchin, S., Menegoto, G. F., Sara, A. J., Pianaro, S. A., Mater. Lett. 60 1554 (2006).CrossRefGoogle Scholar
Cilense, M., Ramirez, M. A., Foschini, C. R., Leite, D. R., Simões, A. Z., Bassi, W., Longo, E., Varela, J. A., J. Am. Ceram. Soc. 96 524 (2013).Google Scholar
Metz, R., Koumeir, D., Morel, J., Pansiot, J., Houabes, M., Hassanzadeh, M., J. Eur. Ceram. Soc. 28 829 (2008).CrossRefGoogle Scholar
Stojanivic, B. D., Foschini, C. R., Cilense, M., Zaghete, M. A., Cavalheiro, A. A., Paiva-Santos, C. O., Longo, E., J, A Varela,nMater Chem Phys 68 136 (2001).CrossRefGoogle Scholar
He, J., Peng, Z., Fu, Z., Wang, Z., Fu, X., J. Alloy Compd. 528 79 (2012).CrossRefGoogle Scholar
Feng, H., Peng, Z., Fu, X., Fu, Z., Wang, C., Qi, L, Miao, H., J. Alloy Compd. 509 7175 (2011).CrossRefGoogle Scholar
Pianaro, S. A., Bueno, P. R., Olivi, P., Longo, E., Varela, J. A., J. Mater. Sci.-Mater. El. 9 159 (1998).CrossRefGoogle Scholar
Wang, J. F., Su, W. B., Chen, H. C., Wang, W. X., Zang, G. Z., J. Am. Ceram. Soc. 88 331 (2005).CrossRefGoogle Scholar
Felix, A. A., Orlandi, M. O., Varela, J. A., Solid State Commun. 151 1377 (2011).CrossRefGoogle Scholar
Tadokoro, S. K., Muccillo, E. N. S., Cerâmica 47 100 (2001).CrossRefGoogle Scholar
Cássia-Santos, M. R., Sousa, V. C., Oliveira, M. M., Bueno, P. R., Bacelar, W. K., Orlandi, M. O., Barrado, C. M., Gomes, J. W., Longo, E., Leite, E. R., Varela, J. A., Cerâmica 47 136 (2001).CrossRefGoogle Scholar
Zang, G. Z., Li, L. B., Liu, H. H., Wang, X. F., Gai, Z. G., J. Alloy Compd. 580 611 (2013).CrossRefGoogle Scholar