Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T07:33:58.525Z Has data issue: false hasContentIssue false

Electrical modeling and simulation of nanoscale MOS devices with a high-permittivity dielectric gate stack

Published online by Cambridge University Press:  28 July 2011

J.L. Autran
Affiliation:
also withInstitut Universitaire de France(IUF) – Corresponding author ([email protected])
D. Munteanu
Affiliation:
Laboratoire Matériaux et Microélectronique de Provence – L2MP (UMR CNRS 6137), Bâtiment IRPHE, BP 146, 49 rue Joliot Curie, F-13384 Marseille Cedex 13, France
M. Houssa
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
M. Bescond
Affiliation:
Laboratoire Matériaux et Microélectronique de Provence – L2MP (UMR CNRS 6137), Bâtiment IRPHE, BP 146, 49 rue Joliot Curie, F-13384 Marseille Cedex 13, France
X. Garros
Affiliation:
CEA-LETI, 17 avenue des Martyrs, BP 85X, F-30854 Grenoble Cedex 1
C. Leroux
Affiliation:
CEA-LETI, 17 avenue des Martyrs, BP 85X, F-30854 Grenoble Cedex 1
Get access

Abstract

The electrical behavior of decananometer MOS transistors with high-k dielectric gate stack has been investigated using 2D numerical simulation. Two important electrostatic limitations of high-k materials have been analyzed and discussed in this work: i) the gate-fringing field effects which compromise short-channel performance when simultaneously increasing the dielectric constant and its physical thickness and ii) the presence of discrete fixed charges in the gate stack, suspected to be at the origin of the stretch-out of C-V characteristics, that induces 2D potential fluctuations in the structure. In both cases, the resulting degradation of transistor operation and performance is evaluated with a two-dimensional quantum simulation code.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. For a recent review, see Fundamental and technological aspects of high-K gate dielectrics, edited by Houssa, M. (IOP, London, 2003) and reference therein.Google Scholar
2. ITRS 2003, available at http://public.itrs.net.Google Scholar
3. Cheng, B. et al. , IEEE Trans. Electron Devices 46, 1537, 2003.Google Scholar
4. Ohata, A., Solid-State Electron. 48, 345, 2003.Google Scholar
5. Yeap, G., Krishnan, S., Lin, M., Electron. Lett. 34, 1150, 2003.Google Scholar
6. Munteanu, D., Autran, JL, Solid-State Electron. 47, 1219, 2003.Google Scholar
7. Autran, J.L., Munteanu, D., Dinescu, R., Houssa, M., J. Non-Cryst. Sol. 322, 219, 2003.Google Scholar
8. Autran, J.L., Munteanu, D., Houssa, M., Proc. Electrochem. Soc. PV2003-01, 383, 2003.Google Scholar
9. Ryou, C. R., Hwang, S.W., Shin, H., Lee, C.H., Parck, Y.J., Min, H.S., Solid-State Electron. 45, 1165, 2001.Google Scholar
10. Nicollian, E.H. and Brews, J.R., MOS physics and technology, John Wiley & Sons, New-York (1982).Google Scholar
11. Garros, X., Ph.D Thesis, University Aix-Marseille 1, France, 2004.Google Scholar
12. Garros, X. et al. J. Non-Cryst. Sol., submitted, 2004.Google Scholar
13. Munteanu, D., Autran, J.L., Bescond, M., Houssa, M., IEEE Proc. ULIS, 39, 2004.Google Scholar
14. Bescond, M., Autran, J.L., Muntenu, D., Lannoo, M., Solid-State Electron. 48, 567, 2004.Google Scholar