Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T01:43:08.848Z Has data issue: false hasContentIssue false

Electrical Conductivity and Electromagnetic Interference Shielding of Multi-walled Carbon Nanotube Filled Polymer Composites

Published online by Cambridge University Press:  01 February 2011

Yonglai Yang
Affiliation:
Applied Research Center, Old Dominion University, Newport News, VA 23606, U.S.A.
Mool C. Gupta
Affiliation:
Applied Research Center, Old Dominion University, Newport News, VA 23606, U.S.A.
Kenneth L. Dudley
Affiliation:
Electromagnetics Research Branch, NASA Langley Research Center, Hampton, VA 23681, U.S.A.
Roland W. Lawrence
Affiliation:
Electromagnetics Research Branch, NASA Langley Research Center, Hampton, VA 23681, U.S.A.
Get access

Abstract

Multi-walled carbon nanotube (MWNT) filled polystyrene (PS) composites were synthesized for electromagnetic interference (EMI) shielding applications. SEM images of composites showed the formation of the conducting networks through MWNTs within the PS matrix. The measured DC conductivity of composites increased with increasing MWNT loading, showing a typical percolation behavior. EMI shielding characteristics of MWNT-PS composites were investigated in the frequency range of 8.2–12.4 GHz (X-band). It was observed that the shielding effectiveness (SE) of such composite increased with the increase of MWNT loading. The SE of the composite containing 7 wt% MWNTs could reach more than 26 dB in the measured frequency region.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Iijima, S., Physica B 323, 1 (2002).Google Scholar
2. Dai, H., Surf. Sci. 500, 218 (2002).Google Scholar
3. Ajayan, P. M., Chem. Rev. 99, 1787 (1999).Google Scholar
4. Thostenson, E. T., Ren, Z. F. and Chou, T. W., Compos. Sci. Technol. 61, 1899 (2001).Google Scholar
5. Inagaki, M., Kaneko, K. and Nishizawa, T., Carbon 42, 1401 (2004).Google Scholar
6. Joo, J. and Epstein, A. J., Appl. Phys. Lett. 65, 2278 (1994).Google Scholar
7. Wu, J. and Chung, D. D. L., Carbon 40, 445 (2002).Google Scholar
8. Das, N. C., Chaki, T. K., Khastgir, D. and Chakraborty, A., J. Appl. Polym. Sci. 80, 1601 (2001).Google Scholar
9. Kim, S. H., Jang, S. H., Byun, S. W., Lee, J. Y., Joo, J. S., Jeong, S. H. and Park, M. J., J. Appl. Polym. Sci. 87, 1969 (2003).Google Scholar
10. Wojkiewicz, J. L., Fauveaux, S. and Miane, J. L., Synth. Met. 135–136, 127 (2003).Google Scholar
11. Das, N. C., Khastgir, D., Chaki, T. K. and Chakraborty, A., Composites A 31, 1069 (2000).Google Scholar
12. Chung, D. D. L., Carbon 39, 279 (2001).Google Scholar
13. Yang, Y. L., Gupta, M. C., Dudley, K. L. and Lawrence, R. W., Nanotechnology 15, 1545 (2004).Google Scholar
14. Grimes, C. A., Mungle, C., Kouzoudis, D., Fang, S. and Eklund, P. C., Chem. Phys. Lett. 319, 460 (2000).Google Scholar
15. Potschke, P., Bhattacharyya, A. R. and Janke, A., Polymer 44, 8061 (2003).Google Scholar