Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T02:26:49.590Z Has data issue: false hasContentIssue false

Electrical Conductance of Single Oligothiophene Molecular Wires: Temperature Effect

Published online by Cambridge University Press:  14 January 2011

See Kei Lee
Affiliation:
Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan.
Ryo Yamada
Affiliation:
Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan.
Shoji Tanaka
Affiliation:
Research Center for Molecular Scale Nanoscience, Institute for Molecular Science, Okazaki, Aichi, Japan.
Hirokazu Tada
Affiliation:
Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan.
Get access

Abstract

We investigated temperature dependence of the electrical conductance of single oligothiophene molecular wires with the length of 2.2 nm (5-mer), 5.6 nm (14-mer) and 6.7 nm (17-mer) by using the scanning tunneling microscopy break junction method. Results show that the dominant charge carrier transport for 5-mer molecule is tunneling while for 17-mer molecule is hopping. The carrier transport mechanism of 14-mer are tunneling transport (T ≤ 350 K) and hopping transport (T > 350 K) indicating that hopping and tunnelling transport are competitive process in the molecular junction.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Aviram, A. and Ratner, M., Chem. Phys. Lett. 29, 277 (1974).Google Scholar
2. Beebe, J. M., Kim, B. S., Gadzuk, J. W., Frisbie, C. D., and Kushmerick, J. G., Phys. Rev. Lett. 97, 0268801 (2006).Google Scholar
3. Salomon, A., Cahen, D., Lindsay, S., Tomfohr, J., Engelkes, V.B. and Frisbie, C.D., Adv. Mater. 15, 1881 (2003).Google Scholar
4. Tao, N. J., Nat. Nanotech. 1, 173 (2006).Google Scholar
5. Chen, F., Li, X., Hihath, J., Huang, Z., and Tao, N. J., J. Am. Chem. Soc. 128, 15874 (2006).Google Scholar
6. Sim, E., J. Phys. Chem. B 109, 11829 (2005).Google Scholar
7. Joachim, C. and Ratner, M. A., Proc. Natl. Acad. Sci. U.S.A., 102, 88018808 (2005).Google Scholar
8. Yamada, R., Kumazawa, H., Noutoshi, T., Tanaka, S., and Tada, H., Nano. Lett. 8, 1237 (2008).Google Scholar
9. Yamada, R., Kumazawa, H., Tanaka, S., and Tada, H., Appl. Phys. Express. 2, 025002 (2009).Google Scholar
10. Choi, S. H., Kim, B.-S., and Frisbie, C. D., Science, 320 1482 (2008)Google Scholar
11. Quek, S. Y., Choi, H. J., Louie, S. G., and Neaton, J. B., Nano Letters, 9 39493953 (2009).Google Scholar
12. Segal, D., Nitzan, A., and Davis, W. B., J. Phys. Chem. B 104, 3817 (2000).Google Scholar
13. Tanaka, S. and Yamashita, Y., Synth. Met. 119, 67 (2001).Google Scholar
14. Tanaka, S. and Yamashita, Y., Trans. Mater. Res. Soc. Jpn. 26, 739 (2001).Google Scholar
15. Tanaka, S. and Yamashita, Y., Synth. Met. 101, 532 (1999)Google Scholar
16. Ciszek, J. W., Stewart, M. P., and Tour, J. M., J. Am. Chem. Soc. 126, 13172 (2004).Google Scholar
17. Lu, Q., Liu, K., Zhang, H., Du, Z., Wang, Z. and Wang, F., American Chemical Society, 3, (2009) 3861386816.Google Scholar
18. Dreesen, L., Volcke, C., Sartenaer, Y., Peremans, A., Thiry, P. A., Humbert, C., Grugier, J., and Marchand-Brynaert, J., Surf. Sci. 600, 4052(2006).Google Scholar
19. Ratner, M. A., Davis, B., Kemp, M., Mujica, V., Roitberg, A. and Yaliraki, S., N.Y.Acad. Sci. II. 852, 22 (1998).Google Scholar
20. Haiss, W., Zalinge, H. V., Bethell, D., Ulstrup, J., Schiffrin, D. J. and Nichols, R. J., Faraday Discuss, 131, 253 (2006).Google Scholar
21. Choi, S. H., Risko, C., Delgado, M. C. R., Kim, B. S., Bredas, J. L., and Frisbie, C. D., J. Am. Chem. Soc. 132, 43584368 (2010).Google Scholar