Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T07:36:22.515Z Has data issue: false hasContentIssue false

Electrical Characterization of Thin Single Crystals of Sexithiophene

Published online by Cambridge University Press:  10 February 2011

C. Daniel Frisbie
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455
Eric L. Granstrom
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455
Michael J. Loiacono
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455
Get access

Abstract

Extremely thin, single crystals of sexithiophene (6T), 2–14 nm thick and 2–5 μm in length and width, can be grown an flat gold substrates by thermal evaporation. The thickness dimension corresponds to 1–6 monolayers (ML) of 6T molecules arranged with their long axes nearly perpendicular to the substrate. We have measured the current-voltage (I-V) characteristics through the thickness of these crystallites, after doping them with iodine, using conducting probe atomic force microscopy (CPAFM). The I-V traces are linear in the ±50 mV regime. The conductance (I/V) of the doped 6T crystals does not decrease monotonically with increasing thickness as might be expected, but instead has a maximum at 3 ML thickness, and we discuss several possible explanations for this observation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. (a) Torsi, L.; Dodabalapur, A.; Rothberg, L. J.; Fung, A. W. P.; Katz, H. E. Science 1996, 272, 1462. (b) Lovinger, A. J.; Rothberg, L. J. J. Mater. Res. 1996, 11, 1581. (c) Dodabalapur, A.; Katz, H. E.; Torsi, L.; Haddon, R. C. Science 1995, 269, 1560. (d) Dodabalapur, A.; Torsi, L.; Katz, H. E. Science 1995, 268, 270. (e) Lovinger, A. J.; Davis, D. D.; Ruel, R.; Torsi, L.; Dodabalapur, A.; Katz, H. E. J.Mater. Res. 1995, 10, 2958. (d) Horowitz, G.; Bachet, B.; Yassar, A.; Lang, P.; Demanze, F.; Fave, J.- L.; Gamier, F. Chem. Mater. 1995, 7, 1337. (e) Garnier, F.; Hajlaoui, R.; Yassar, A.; Srivastava, P. Science 1994, 265, 1684. (f) Garnier, F.; Yassar, A.; Hajlaoui, R.; Horowitz, G.; Deloffre, F. Electrochimica Acta, 1994, 39, 1339. (g) Garnier, F.; Yassar, A.; Hajlaoui, R.; Horowitz, G.; Deloffre, F.; Servet, B.; Ries, S.; Alnot, P. J. Am. Chem. Soc. 1993, 115, 8716. (h) Horowitz, G.; Peng, X.; Fichou, D.; Gamier, F. J. Appl. Phys. 1990, 67, 528. (i) Horowitz, G.; Fichou, D.; Peng, X.; Xu, Z.; Gamier, F. Sol. State. Comm. 1989, 72, 381.Google Scholar
2. Loiacono, M. J.; Granstrom, E. L; Frisbie, C. D. J. Phys. Chem. B, to be published (1998).Google Scholar
3. Dai, H.; Wong, E. W.; Lieber, C. M. Science 1996, 272, 523.Google Scholar
4. (a) Hegner, M.; Wagner, P.; Semenza, G. Surf. Sci. 1993, 291, 39. (b) Wagner, P.; Hegner, M.; Guntherodt, H. J.; Semenza, G. Langmuir 1995,11, 3867.Google Scholar
5. (a) Garnier, F.; Kouki, F.; Hajlaoui, R.; Horowitz, G. MRS Bulletin June, 1997, 52. (b) Parker, I. D. J. Appl. Phys. 1994, 75, 1656.Google Scholar