No CrossRef data available.
Article contents
Electrical Characterization of Sputter Deposition Induced Defects in n-GaN
Published online by Cambridge University Press: 15 February 2011
Abstract
We have used current-voltage (I-V) measurements to assess and compare the electrical characteristics of resistively evaporated and sputter deposited Au Schottky contacts on epitaxially grown GaN. These I-V measurements revealed that resistively deposited Au contacts exhibited excellent rectification properties: high barrier height, low reverse current and good ideality factor (n = 1.04). In contrast, sputter deposited contacts had poor characteristics: low barrier height, high reverse current and non-linear forward I-V characteristics. The cause of this is thought to be defects introduced at and near the surface during sputter deposition. Deep level transient spectroscopy (DLTS) showed that at least four defects, with energy levels at 0.22±0.02 eV, 0.30±0.01 eV, 0.40±0.01 eV and 0.45±0.10 eV below the conduction band, were introduced in the GaN during sputter deposition. The first of these defects has similar electronic properties as a radiation induced defect in GaN, speculated to be the nitrogen vacancy, while the second appears to be the same as a defect in the as-grown material. The latter two defects have not previously been observed in as-grown or processed epitaxial GaN.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1999