Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-29T07:47:30.364Z Has data issue: false hasContentIssue false

Electrical Characterization of Passivation Processes in Si-GaAs by Isothermal Photoinduced Transient Measurements

Published online by Cambridge University Press:  22 February 2011

R. Dkiouak
Affiliation:
Serveis Cientifico-Tècnics, Universitat de Barcelona, C/ Martí Franqués s/n, 08028 Barcelona, Spain
J. Macia
Affiliation:
Serveis Cientifico-Tècnics, Universitat de Barcelona, C/ Martí Franqués s/n, 08028 Barcelona, Spain
A. Perez-Rodriguez
Affiliation:
Serveis Cientifico-Tècnics, Universitat de Barcelona, C/ Martí Franqués s/n, 08028 Barcelona, Spain
J. Gual
Affiliation:
Serveis Cientifico-Tècnics, Universitat de Barcelona, C/ Martí Franqués s/n, 08028 Barcelona, Spain
J.R. Morante
Affiliation:
LCMM, Dept. Física Aplicada i Electrònica, Universitat de Barcelona, Avda. Diagonal 645-647, 08028 Barcelona, Spain
Get access

Abstract

The analysis of SI-GaAs passivated with different plasma treatments by isothermal PITS measurements shows the ability of this technique for the characterization of the electrical effects of the surface treatments. PITS spectra show, in addition to a midgap level assigned to EL2, a non exponential peak which strongly depends on the passivation process. This is related to the generation of defects during the surface processing, likely through the presence of interaction processes involving mid-gap related levels. The comparison between the spectra with different passivation conditions suggests the presence of ionized species in the plasma treatment and the fast growth rate of the passivation layer to determine a higher generation of these process related defects.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Balland, J.C., Zielinger, J.P., Noguet, C. and Tapiero, M., J. Phys. D: Appl. Phys. 19, 57 (1986).Google Scholar
2. Morante, J.R., Pérez-Rodríguez, A., Samitier, J. and Romano-Rodríguez, A., J. Appl. Phys. 70, 4202 (1991).Google Scholar
3. Friedel, P., Landesman, J.P., Boher, P. and Schneider, J., J. Vac. Sci. Technol. B 5, 1129 (1987).Google Scholar
4. Gual, J., Dkiouak, R., Samitier, J., Morante, J.R., Comet, A., Boher, P. and Renaud, M., Surf. Scien. 251/252, 195 (1991).Google Scholar
5. Makram-Ebeid, S. and Boher, P., Rev. Phys. Appl. 23, 847 (1988).Google Scholar
6. Gual, J., Dkiouak, R., Samitier, J., Morante, J.R., Boher, P. and Renaud, M., in Semii-insulating III-V Materials. Toronto 1990, edited by Milnes, A. and Milner, C.J. (Adam Hilger-IOPP, 1990), p. 439.Google Scholar