Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T13:51:46.906Z Has data issue: false hasContentIssue false

The Electrical Characteristics of ZnO :Ga/p-Si Junction Diode

Published online by Cambridge University Press:  21 February 2013

Tien-Chai Lin
Affiliation:
Department of Electrical Engineering, Kun Shan University, No. 949, Da-Wan Road, Yong-Kang district, Tainan, 71003, Taiwan, ROC
Wen-Chang Huang*
Affiliation:
Department of Electro-Optical Engineering, Kun Shan University, No. 949, Da-Wan Road, Yong-Kang district, Tainan, 71003, Taiwan, ROC
Chia-Tsung Horng
Affiliation:
Department of Electro-Optical Engineering, Kun Shan University, No. 949, Da-Wan Road, Yong-Kang district, Tainan, 71003, Taiwan, ROC
Shu-Hui Yang
Affiliation:
Department of Electro-Optical Engineering, Kun Shan University, No. 949, Da-Wan Road, Yong-Kang district, Tainan, 71003, Taiwan, ROC
*
*Corresponding author: e-mail:[email protected]
Get access

Abstract

The junction characteristics between ZnO:Ga (GZO) film and p-Si substrate are discussed in the research. For the transparent semiconductor ZnO, the element Ga is chosen to be the dopant source to produce a high quality n-type ZnO thin film. The ZnO:Ga (GZO) film shows a average transmittance is 84.7% (above 400 nm), a bandgap energy of 3.37 eV, a carrier concentration of 7.29×1013 cm−3and a resistivity of 118 Ω-cm. For the GZO/p-Si junction, it shows a junction barrier height of 0.54 eV with an ideality factor of 1.24. The capacitance-voltage measurement shows that it has a uniform reverse bias depletion layer. The Cheung function is also brought to discussion the diode characteristics.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Jagadish, C., Pearton, S.J., Zinc Oxide Bulk, Thin Films and Nanostructures, Elsevier, Amsterdam, 2006.Google Scholar
Okamura, T., Seki, Y., Nagakari, S., Okushi, H., Japan. J. Appl. Phys. 31 (1992) L762.CrossRefGoogle Scholar
Lee, J.Y., Choi, Y.S., Choi, W.H., Yeom, H.W., Yoon, Y.K., Kim, J.H., Im, S., Thin Solid Films 420/421,112 (2002) 112 CrossRefGoogle Scholar
Park, C.H., Lee, J.Y., Im, S., Kim, T.G., Nucl. Instru. Meth. B206, 432 (2003).CrossRefGoogle Scholar
Luo, L., Zhang, Y., Mao, S.S., Lin, L., Sensors and Actuators A 2006;127:201–6.CrossRefGoogle Scholar
Kim, H.Y., Kim, J.H., Park, M.O., Im, S., Thin Solid Films, 93, 398(2001).Google Scholar
Young, S.J., Ji, L.W., Chuang, R.W., Chang, S.J., Du, X.L., Semi. Sci. Tech. 21, 1507( 2006).CrossRefGoogle Scholar
Chen, L.C., Pan, C.N., The Open Crystallography Journal, 1, 10(2008).CrossRefGoogle Scholar
Turut, A., Saglam, M., Efeoglu, H., Yalcin, N., Yildirim, M., Abay, B., Phys. B 205, 41 (1995).CrossRefGoogle Scholar
Cheung, S.K., Cheung, N.W., Appl. Phys. Lett. 49, 85 (1986).CrossRefGoogle Scholar