Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T07:42:35.506Z Has data issue: false hasContentIssue false

Electrical Characteristics of Crystalline Gd2O3 Film on Si (111): Impacts of Growth Temperature and Post Deposition Annealing

Published online by Cambridge University Press:  01 February 2011

Gang Niu
Affiliation:
[email protected], Institute of Nanotechnologies of Lyon, Ecully, France
Bertrand Vilquin
Affiliation:
[email protected], Institute of Nanotechnologies of Lyon, Ecully, France
Nicolas Baboux
Affiliation:
[email protected], Institute of Nanotechnologies of Lyon, Lyon, France
Guillaume Saint-Girons
Affiliation:
[email protected], Institute of Nanotechnologies of Lyon, Ecully, France
Carole Plossu
Affiliation:
[email protected], Institute of Nanotechnologies of Lyon, Lyon, France
Guy Hollinger
Affiliation:
[email protected], Institute of Nanotechnologies of Lyon, Ecully, France
Get access

Abstract

This work reports on the epitaxial growth of crystalline high-k Gd2O3 on Si (111) by Molecular Beam Epitaxy (MBE) for CMOS gate application. Epitaxial Gd2O3 films of different thicknesses have been deposited on Si (111) between 650°C~750°C. Electrical characterizations reveal that the sample grown at the optimal temperature (700°C) presents an equivalent oxide thickness (EOT) of 0.73nm with a leakage current density of 3.6×10-2 A/cm2 at |Vg-VFB|=1V. Different Post deposition Annealing (PDA) treatments have been performed for the samples grown under optimal condition. The Gd2O3 films exhibit good stability and the PDA process can effectively reduce the defect density in the oxide layer, which results in higher performances of the Gd2O3/Si (111) capacitor.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Norton, D.P., Mat. Sci. Eng. R 43, 139 (2004)Google Scholar
2 Gottlob, H.D.B. et al. , Solid-State Electron. 50 979985 (2006)Google Scholar
3 Laha, A. Bugiel, E. Wang, J. X. Sun, Q. Q. Fissel, A. and Osten, H. -J. Appl. Phys. Lett. 93, 182907 (2008)Google Scholar
4 Laha, A. Bugiel, E. Fissel, A. and Osten, H -J. Microelectron. Eng. 85, 2350 (2008)Google Scholar
5 Niu, G. Largeau, L. Saint-Girons, G., Vilquin, B. Cheng, J. Mauguin, O. Hollinger, G. Monolithic integration of germanium on Gd2O3Si (111) compliant substrate by molecular beam epitaxy, submitted to J. Appl. Phys. (2009)Google Scholar
6 Bos, Jan-Willem, Aken, Bas B. van, Palstra, Thomas T.M., Chem. Mater., 13, 48044807 (2001)Google Scholar
7 Kwo, J. Hong, M. Kortan, A. R. Queeney, K. L. Chabal, Y. J. Opila, R. L. Jr. , Muller, D. A. Chu, S. N. G. Sapjeta, B. J. Lay, T. S. Mannaerts, J. P. Boone, T. Krautter, H. W. Krajewski, J. J. Sergnt, A. M. and Rosamilia, J. M. J. Appl. Phys. 89, 3920, (2001)Google Scholar
8 Laha, A. Osten, H.-J. and Fissel, A. Appl. Phys. Lett. 89, 143514 (2006)Google Scholar
9 Niu, G. Vilquin, B. Baboux, N. Plossu, C. Becerra, L. Saint-Girons, G., Hollinger, G. Microelectron. Eng. 86, 1700 (2009)Google Scholar
10 Busseret, C. Baboux, N. Plossu, C. and Poncet, A. Proceedings of SISPAD, (unpublished), 188. (2006)Google Scholar
11 Palestri, P. et al. , IEEE Trans. Electron Devices 54, 106 (2007)Google Scholar
13 Gottlob, H. D. B. et al. IEEE Electon Device Lett. 27, 814 (2006)Google Scholar
14 Li, Y. Chen, N. Zhou, J. Song, S. Liu, L. Yin, Z. and Cai, C. J. Cryst. Growth 265, 548 (2004)Google Scholar
15 Sze, S. M. Physics of Semiconductor Devices, Wiley, New York, (1981)Google Scholar