Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-20T11:33:58.887Z Has data issue: false hasContentIssue false

The Electrical Behavior of Grain Boundaries in Silicon*

Published online by Cambridge University Press:  15 February 2011

C. H. Seager*
Affiliation:
Sandia National Laboratories, Albuquerque, Nm, 87185, USA
Get access

Abstract

Despite the fact that lattice imaging studies have shown that grain boundaries in group IV semiconductors often have structures which are complicated and inhomogeneous on the scale of tens-tohundreds of angstroms, simple theories assuming uniform double depletion layers have recently been shown to successfully predict many of the majority carrier transport properties of these defects. On the other hand our knowledge of the interaction of grain boundaries with minority carriers is in a considerably more primitive state. I will describe recent attempts to understand the effects of illumination on grain boundary potential barrier heights and the influence of these defects on the optically generated minority carrier population. Quantifying this latter interaction is particularly important in estimating the performance of polycrystalline solar cells. Simple but elegant scanned excitation measurements for measuring s, the minority carrier recombination velocity at grain boundaries, will be reviewed. I will discuss recent measurements of s as a function of temperature and illumination intensity and show how these data can be correlated with zero-bias impedance measurements.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This work performed at Sandia National Laboratories supported by the U.S. Department of Energy under contract DE–AC04–76DP00789.

References

REFERENCES

1. See for instance, Grain Boundaries in Semiconductors, ed. byPike, G. E., Seager, C. H., and Leamy, H. T. (North Holland, New York, 1982).Google Scholar
2. Bourret, A. and Desseaux, J., Phil. Mag. A39, 405 (1979).Google Scholar
3. Carter, C. B., Rose, J., and Ast, D. G., Proc. 39th EMSA (1981).Google Scholar
4. Cunningham, B.D. and Ast in reference 1, p. 21Google Scholar
5. Anne-Marie Papon, , Maurice Petit, , Georges Silvestre, , and Bacmann, J. J.,reference 1, p. 27.Google Scholar
6. Carter, C. B., reference 1, p. 33.Google Scholar
7. Cunningham, B., Strunk, H. P., and Ast, D. G., in reference 1, p. 51.Google Scholar
8. Kazmerski, L. L., J. Vac. Sci. Technol. 20, 423 (1982).Google Scholar
9. Taylor, W. E., Odell, N. H., and Fan, H. Y., Phys. Rev. 88, 867 (1952).Google Scholar
10. Seager, C. H. and Pike, G. E., Appl. Phys. Lett. 37, 747 (1980).Google Scholar
11. Seager, C. H. and Pike, G. E., Appl. Phys. Letter. 35, 709 (1979).Google Scholar
12. Seager, C. H., Pike, G. E., and Ginley, D. S., Phys. Rev. Lett. 43, 532 (1979).Google Scholar
13. Werner, J., Jantsch, W., Froehner, K. H., and Queisser, H. J. in reference 1, p. 99.Google Scholar
14. Mueller, R. K., J. Appl. Phys. 32, 635 (1961);Google Scholar
14a 32, 640 (1961).Google Scholar
15. Seager, C. H., J. Appl. Phys. 53, 5968 (1982).Google Scholar
16. Seager, C. H., to be published in the Nov. 1 Issue of Applied Physics Letters.Google Scholar
17. Matare, H. F.,(John Wiley & Sons, New York, 1971).Google Scholar
18. Hornstra, J., J. Phys. Chem. Solids 5, 129 (1958).Google Scholar
19. Ray, I. L. F. and Cockayne, D. J. H., Proc. R. Soc. London A325, 532(1971).Google Scholar
20. Johnson, N. M., Biegelsen, D. K., and Moyer, M. D., Appl. Phys. Lett. 40,882 (1982).Google Scholar
21. Brodsky, M. H. and Title, R. S., Phys. Rev. Lett. 23, 581 (1969).Google Scholar
22. Lepine, D., Grazhulis, V. A. and Kaplan, D., Physics of Semiconductors,International Conference, Rome, 1976, p. 1081 (unpublished).Google Scholar
23. Caplan, P. J., Poindexter, E. H., Deal, B. E., and Razouk, R. R., J. Appl.Phys. 50, 5847 (1979).Google Scholar
24. Lenahan, P. M. and Dressendorfer, P. V., to be published in Applied Physics Letters.Google Scholar
25. Fontaine, C. and Smith, D. A., reference 1, p. 39.Google Scholar
26. Vaughan, D., Phil. Mag. 22, 1003 (1970).Google Scholar
27. Kazmerski, L. L., Ireland, P. J. and Ciszek, T. F., Appl. Phys. Lett. 36,323 (1980).Google Scholar
28. Russell, P. E., Herrington, C. R., Burke, D. E., and Holloway, P. H. in reference 1, p. 185.Google Scholar
29. Redfield, D., Appl. Phys. Lett. 38, 174 (1981).Google Scholar
30. Fonash, O. S. at the Solar Energy Research Institute Polycrystalline Silicon Subcontractors Meeting, Golden, CO, June 17–18, 1982, SERI CP–211–1648.Google Scholar
31. Seager, C. H. and Ginley, D. S., Fundamental Studies of Grain Boundary Passivation with Application to Improved Photovoltaic Devices, A Research Report Covering Work Completed from February 1981 to January 1982, SAND 82–1701.Google Scholar
32. Seager, C. H., unpublished work.Google Scholar
33. Card, H. C. and Yang, E. S., IEEE Trans. Elect. Devices ED–24, 397 (1977).Google Scholar
34. Fossum, J. G. and Lindholm, F. A., IEEE Trans. Elect. Devices ED–27, 692(1980).Google Scholar
35. Seager, C. H., J. Appl. Phys. 52, 3960 (1981).Google Scholar
36. Seager, c. H. and Pike, G. E., Appl. Phys. Lett. 40, 471 (1982).Google Scholar
37. See for instance, Deep Impurities in Semiconductors, Milnes, A. G. (Wiley & Sons, New York, 1973).Google Scholar
38. Hall, R. N., Phys. Rev. 87, 387 (1952);Google Scholar
38a Schockly, W. and Read, W. T.,Phys Rev. 87, 835 (1952).CrossRefGoogle Scholar
39. Pike, G. E. and Seager, C. H., J. Appl. Phys. 50, 3414 (1979).Google Scholar
40. Chu, T. L., Chu, S. S., Duh, K. Y., and Yoo, H. I., Proc.of the National Workshop on Low Cost Polycrystalline Silicon Solar Cells, May 1976, Dallas, TX, p. 408.Google Scholar
41. Zook, J. D., Appl. Phys. Lett. 37, 223 (1980).Google Scholar
42. Faughnan, B. W. at the Solar Energy Research Institute Polycrystalline Silicon Subcontractors Meeting, Colorado Springs, CO, Nov. 17–19, 1980.SERI/CP6141263.Google Scholar
43. Dash, W. C. and Newman, R., Phys. Rev. 99, 1152 (1955).Google Scholar