No CrossRef data available.
Article contents
Electrical and Optical Properties of Vanadium in Omvpe-Grown GaAs
Published online by Cambridge University Press: 28 February 2011
Abstract
The electrical and photoluminescent properties of vanadium incorporated into GaAs epitaxial layers from a VO(OC2 H5)3 source during organometallic vapor phase epitaxy were examined. The vanadium concentration in the GaAs was controllably varied from 1016 to 1018 atoms cm−3. Deep level transient spectroscopy showed the presence of an electron trap at Ec – 0.15 eV which increased in concentration with vanadium content of the epitaxial layers. A maximum value of 8 × 1015 cm−3 for this trap was obtained. There were no midgap electron traps associated with vanadium. In intentionally Si-doped epitaxial layers, co-doping with vanadium was observed to have no effect in reducing the carrier density when the Si concentration was > 4 × 1016 cm−3. The net carrier concentration profiles resulting from 29 si implantation into GaAs containing 1018 cm−3of total V had sharper tails than for similar implantation into undoped material, indicating the presence of less than 1016 cm−3V-related acceptors. Photoluminescent spectra exhibited the characteristic V+3intracenter emission at 0.65∼0.75 eV. No other deep level photoluminescence was detected. For a V concentration of 1016 cm−3only 2.5 × 1013 cm−3was electrically active. Over the entire V concentration investigated this impurity was predominantly (≥99%) inactive.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1989