Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T01:33:14.228Z Has data issue: false hasContentIssue false

The Electrical and Optical Properties of GaAs with as Precipitates (GaAs:As)

Published online by Cambridge University Press:  15 February 2011

A. C. Warren
Affiliation:
IBM Research Division, P.O. Box 218, Yorktown Heights, NY 10598
J. M. Woodall
Affiliation:
IBM Research Division, P.O. Box 218, Yorktown Heights, NY 10598
J. H. Burroughes
Affiliation:
IBM Research Division, P.O. Box 218, Yorktown Heights, NY 10598
P. D. Kirchner
Affiliation:
IBM Research Division, P.O. Box 218, Yorktown Heights, NY 10598
H. K. Heinrich
Affiliation:
IBM Research Division, P.O. Box 218, Yorktown Heights, NY 10598
G. Arjavalingam
Affiliation:
IBM Research Division, P.O. Box 218, Yorktown Heights, NY 10598
N. Katzenellenbogen
Affiliation:
IBM Research Division, P.O. Box 218, Yorktown Heights, NY 10598
D. Grischkowsky
Affiliation:
IBM Research Division, P.O. Box 218, Yorktown Heights, NY 10598
M. R. Melloch
Affiliation:
School of Electrical Engineering, Purdue University, West Layfayette, IN 47907
N. Otsuka
Affiliation:
School of Materials Engineering, Purdue University, West Layfayctte, aIN 47907
K. Mahalingam
Affiliation:
School of Materials Engineering, Purdue University, West Layfayctte, aIN 47907
F. H. Pollak
Affiliation:
Department of Physics, Brooklyn College of CUNY, Brooklyn, NY 11210
X. Yin
Affiliation:
Department of Physics, Brooklyn College of CUNY, Brooklyn, NY 11210
Get access

Abstract

Since its initial report by the IBM/Purdue University group in 1990, GaAs with As precipitates (GaAs:As) has been shown by this group to exhibit unusual and useful electrical and optical properties. In this paper we review our progress in understanding the fundamental properties of this material. We have shown that both the electrical and optical properties of GaAs:As arc explained by assuming that the GaAs is of good crystalline quality and that the As precipitates act as buried Schottky barriers. This model accounts for its semi-insulating stability against both n- and p-type doping, its high-speed photoconductive behavior, and its ability to detect 1.3 micron light when it forms the “I” layer of a PIN photodiode via the internal photoemission process. Using modulation spectroscopy we clarify the fundamental differences between GaAs:As and unannealed GaAs grown at 200 C. We also show that GaAs:As used as a 1.3 micron detector in the metal-semiconductor-metal device structure format, has a photoconductive bandwidth in excess of 50 GHz.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Warren, A.C., Woodall, J.M., Frceouf, J.L., Grischkowsky, D., Mclnturff, D.T., Melloch, M.R., and Otsuka, N., Appl. Phys. Lett. 57 (13), 1331 (1990).Google Scholar
2.Smith, F.W., Le, H.Q., Diadiuk, V., Hollis, M.A., Calawa, A.R., Gupta, S., Frankel, M., Dykaar, D.R., Moureau, G.A. and Hsiang, T.Y., Appl. Phys. Lett., 54, 890 (1989).Google Scholar
3.Kaminska, M., Liliental-Weber, Z., Weber, E.R., George, T., Kortright, J.B., Smith, F.W., Tsaur, B-Y. and Calawa, A.R., Appl. Phys. Lett., 54, 1881 (1989).Google Scholar
4.Manasreh, M.O., Look, D.C., Evans, K.R. and Stutz, C.E., Phys. Rev. B 41, 10272 (1990).Google Scholar
5.Kaminska, M., Weber, E.R., Liliental-Weber, Z. and Leon, R., Jour. Vac. Sci. Tech. B 7, 710 (1989).Google Scholar
6.Liliental-Weber, Z., Cooper, G., Mariella, R. and Kocot, C., Jour. Vac. Sci. Tech. B 9 (4), 2323 (1991).Google Scholar
7. Jeff Kash, private communication.Google Scholar
8.Melloch, M.R., Otsuka, N., Woodall, J.M., Warren, A.C., and Frecouf, J.L., Appl. Phys. Lett., 57 (15), 1531 (1990).Google Scholar
9.Mahallingam, K., Otsuka, N., Melloch, M.R., Woodall, J.M. and Warren, A.C., Jour. Vac. Sci. Tech. B 9 (4), 2328 (1991).Google Scholar
10.Warren, A.C., Katzenellenbogen, N., Grischkowsky, D.,. Woodall, I.M., Melloch, M.R., and Otsuka, N., Appl. Phys. Lett. 58 (14), 1512 (1991).Google Scholar
11..Schaff, W.J., Workshop on Low Temperature GaAs Buffer Layers, San Francisco, CA, Apr. 20, 1990 (unpublished).Google Scholar
12.Voorhees, P.W., Journal of Statistical Physics, 38, 231 (1985).Google Scholar
13.Kavanaugh, K. and Kirchner, P.D., private communicationGoogle Scholar
14.Yin, X., Chen, H-M., Pollak, F.H., Montano, P.A., Kirchner, P.D., Pettit, G.D. and Woodall, J.M., Appl. Phys. Lett. 58, 260 (1991).Google Scholar
15.Yin, X. and Pollak, F., Appl. Phys. Lett. 59, 2305 (1991).Google Scholar
16.Look, D.C., Walters, D.C., Manasreh, M.O., Sizelove, J.R., Stutz, C.E. and Evans, K.R., Phys. Rev. B 42 (6), 3578 (1990).Google Scholar
17.Mclnturff, D.T., Woodall, J.M., Warren, A.C., Braslau, N., Pettit, G.D., Kirchner, P.D. and Melloch, M.R., Appl. Phys. Lett. (accepted for publication).Google Scholar
18.Zirngibl, M. and Ilegems, M., J. Applied Physics, 69 (12), 8392 (1991).Google Scholar
19.Warren, A.C., Burroughes, J.H., Woodall, J.M., Mclnturff, D.T., Hodgson, R.T. and Melloch, M.R., IEEE Electron Dev. Lett., 12, 527 (1991).Google Scholar
20.Kai, K., Tomita, A., ”Optical Fiber Pulse Compression at 1.319 pm,” Appl. Phys. Lett., 48, 309 (1986).Google Scholar
21.Ranieri, V.A., Deutsch, A., Kopscay, G.V. and Arjavalingam, G., ”A Novel 24-GHz Bandwidth Coaxial Probe,” IEEE Trans. Instrmn. and Meas., 39, 504 (1990).Google Scholar
22.Burroughes, J.H. and Kwark, Y., ”Optimization of GaAs MSM Photodetectori on a MESFET Line,” to be published.Google Scholar