Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T15:35:55.720Z Has data issue: false hasContentIssue false

Electrical and Optical Properties of Carbon Doped Cubic GaN Epilayers Grown Under Extreme Ga Excess

Published online by Cambridge University Press:  01 February 2011

D. J. As
Affiliation:
University of Paderborn, Faculty of Science, Department of Physics, Warburger Strasse 100, D-33095 Paderborn, Germany, [email protected]
D. G. Pacheco-Salazar
Affiliation:
University of Paderborn, Faculty of Science, Department of Physics, Warburger Strasse 100, D-33095 Paderborn, Germany, [email protected]
S. Potthast
Affiliation:
University of Paderborn, Faculty of Science, Department of Physics, Warburger Strasse 100, D-33095 Paderborn, Germany, [email protected]
K. Lischka
Affiliation:
University of Paderborn, Faculty of Science, Department of Physics, Warburger Strasse 100, D-33095 Paderborn, Germany, [email protected]
Get access

Abstract

P-type doping of cubic GaN by carbon is reported with maximum hole concentration of 2 6.1×1018cm-3 and hole mobility of 23.5 cm /Vs at room temperature, respectively. The cubic GaN:C was grown by rf-plasma assisted molecular beam epitaxy (MBE) under Ga-rich growth conditions on a semiinsulating GaAs (001) substrate (3 inches wafer). E-beam evaporation of a graphite rode with an C-flux of 1×1012cm-2s-1 was used for C-doping of the c-GaN. Optical microscopy, Hall-effect measurements and photoluminescence were performed to investigate the morphological, electrical and optical properties of cubic GaN:C. Under Ga-rich growth conditions most part of the carbon atoms were incorporated substitutially on N-site giving p-type conductivity. Our results verify that effective p-type doping of c-GaN can be achieved under extrem Ga excess.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Abernathy, C.R., MacKenzie, J.D., Pearton, S.J. and Hobson, W.S., Appl. Phys. Lett. 66 (15), 1969 (1995).Google Scholar
2. As, D.J. and Köhler, U., J. Phys.: Condens. Matter 13 (40), 8923 (2001).Google Scholar
3. Fernandez, J.R.L., Cerdeira, F., Meneses, E.A., Brasil, M.J.S.P., Soares, J.A.N.T., Santos, A.M., Noriega, O.C., Leite, J.R., As, D.J., Köhler, U., Potthast, S. and Pacheo-Salazar, D.G., Phys. Rev. B 68, 155204 (2003).Google Scholar
4. Armitage, R., Yang, Q., Feick, H., Park, Y. and Weber, E.R., MRS Symp. Proc. 719, F1.2 (2002).Google Scholar
5. As, D.J., Defect and Diffusion Forum 206–207, 87 (2002).Google Scholar
6. Wright, A.F., J. Appl. Phys. 92 (5), 2575 (2002).Google Scholar
7. Seager, C.H., Wright, A.F., Yu, J. and Götz, W., J. Appl. Phys. 92 (11), 6553 (2002).Google Scholar
8. Look, D.C., in “Electronic characterization of GaAs materials and devices”, Wiley, Chichester (1989)Google Scholar
9. Schöttker, B., Kühler, J., As, D.J., Schikora, D. and Lischka, K., Materials Science Forum 264–268, 1173 (1998).Google Scholar
10. Köhler, U., Lübbers, M., Mimkes, J. and As, D.J., Physica B 308–310, 126 (2002).Google Scholar
11. As, D.J., Schmilgus, F., Wang, C., Schöttker, B., Schikora, D. and Lischka, K., Appl. Phys. Lett. 70 (10), 1311 (1997).Google Scholar
12. As, D.J., Frey, T., Khartchenko, A., Schikora, D., Lischka, K., Goldhahn, R. and Shokhovets, S., Mat. Res. Soc. Symp. Proc. 639, G5.9 (2001).Google Scholar