Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T18:43:24.870Z Has data issue: false hasContentIssue false

Electric fields at the SiC/AlN and SiC/GaN polar interfaces

Published online by Cambridge University Press:  17 March 2011

Morad Rouhani Laridjani
Affiliation:
Groupe d'Etude des Semiconducteurs, CNRS-UMR 5650, Université Montpellier 2, cc 074, 12 Place E. Bataillon, 34095 Montpellier CEDEX 5, France
Pierre Masri
Affiliation:
Groupe d'Etude des Semiconducteurs, CNRS-UMR 5650, Université Montpellier 2, cc 074, 12 Place E. Bataillon, 34095 Montpellier CEDEX 5, France
Jacek A. Majewski
Affiliation:
Walter Schottky Institute and Physics Department, TU München, Germany
Get access

Abstract

We present first-principles calculations of structural and electronic properties of heterovalent SiC/AlN and SiC/GaN heterostructures with wurtzite AlN and GaN films pseudomorphically grown on the 6H-SiC and 3C-SiC substrates along the c-axis. We have investigated reconstructed stoichiometric interfaces consisting of one mixed layer with various lateral arrangements. The preferred bonding configurations of the reconstructed interfaces are found to be Si-N and Ga-C. The calculated valence band discontinuities for SiC/AlN and SiC/GaN heterostructures lie in the range of 1.5 - 2.3 eV and 0.4 - 1.4 eV, respectively. The SiC/AlN heterostructures are predicted to be of type I, whereas SiC/GaN heterostructures can be of type I or II. The polarization induced interface charges are of the order of 4.8 × 1012cm−2 and 0.7 × 1012 cm−2 in SiC/AlN and SiC/GaN junctions, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nakamura, S. and Fasol, G., The Blue Laser Diode, (Springer, Berlin, 1997).Google Scholar
2. Rizzi, A., Lantier, R., and Luth, H., phys. stat. sol. (a) 177, 165 (2000).Google Scholar
3. King, S.W., Davis, R.F., C.Ronning, Benjamin, M.C., and Nemanich, R.J., J. Appl. Phys. 86, 4483 (1999).Google Scholar
4. Capaz, R.B., Lim, H., and Joannopoulos, J.D., Phys. Rev. B 51, 17755 (1995).Google Scholar
5. Ponce, F.A., Walle, C.G. Van de, and Northrup, J.E., Phys. Rev. B 53, 7473 (1996).Google Scholar
6. Felice, R. Di, Northrup, J.E., and Neugebauer, J., Phys. Rev. B 54, R17351 (1996).Google Scholar
7. Ferrara, P., Binggeli, N., and Baldereschi, A., Phys. Rev. B 55, R7418 (1997).Google Scholar
8. Pickett, W.E., Computer Physics Reports 9, 115 (1989).Google Scholar
9. Troullier, N. and Martins, J.L., Phys. Rev. B 43, 1993 (1991); L. Kleinman and D.M. Bylander, Phys. Rev. Lett. 48, 1425 (1982).Google Scholar
10. Payne, M.C., Teter, M.P., Allan, D.C., Arias, T.A., and Joannopoulos, J.D., Rev. Mod. Phys. 64, 1045 (1992).Google Scholar
11. Louie, S.G., Froyen, S., and Cohen, M.L., Phys. Rev. B 26, 1738 (1982).Google Scholar
12. Städele, M., Majewski, J.A., and Vogl, P., Phys. Rev. B 56, 6911 (1997).Google Scholar
13. Harrison, W.A., Kraut, E.A., Waldrop, J.R., and Grant, R.W., Phys. Rev. B 18, 4402 (1978); K. Kunc and R.M. Martin, ibid., 24, 3445 (1981).Google Scholar
14. Majewski, J.A. and Städele, M., in Nitride Semiconductors, edited by Ponce, F.A., DenBaars, S.P., Meyer, B.K., Nakamura, S., and Strite, S., (Mat. Res. Soc. Proc. 482, Pittsburg, PA, 1998) pp. 917922.Google Scholar
15. Bernardini, F., Fiorentini, V., and Vanderbilt, D., Phys. Rev. B 56, R10024 (1997).Google Scholar