Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T09:43:36.214Z Has data issue: false hasContentIssue false

Electric field pulse assisted covalent immobilization and hybridization of DNA in the nanosecond time scale

Published online by Cambridge University Press:  15 February 2011

F. Fixe
Affiliation:
INESC Microsistemase Nanotecnologias, Lisbon, Portugal Center for Biological & Chemical Engineering, Instituto Superior Técnico, Lisbon, Portugal
H.M. Branz
Affiliation:
INESC Microsistemase Nanotecnologias, Lisbon, Portugal National Renewable Energy Laboratory, Golden, CO, USA
D.M.F. Prazeres
Affiliation:
Center for Biological & Chemical Engineering, Instituto Superior Técnico, Lisbon, Portugal
V. Chu
Affiliation:
INESC Microsistemase Nanotecnologias, Lisbon, Portugal
J.P. Conde
Affiliation:
INESC Microsistemase Nanotecnologias, Lisbon, Portugal Department of Materials Engineering, Instituto Superior Técnico, Lisbon, Portugal
Get access

Abstract

A single, square, voltage pulse is used to accelerate both the immobilization kinetics of DNA molecules on a functionalized thin film silicon dioxide surface and the hybridization of complementary DNA strands to immobilized DNA molecules. The voltage pulse is applied to an integrated thin-film metal electrode beneath the functionalized surface. The duration and magnitude of the voltage pulse are compatible with silicon microelectronics circuits. During immobilization, covalent thiol bonding to the functionalized surface occurs during a single pulse lasting only 100 ns. Hybridization to the immobilized complementary strand occurs during 100 μs pulses.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Southern, E., Mir, K. & Shchepinov, M. Nature Genet., 21 (Suppl.), 5 (1999)Google Scholar
2. Ramsay, G. DNA chips: state-of-the art, Nature Biotechnol., 16, 40 (1998).Google Scholar
3. Pease, A.C., Solas, D., Sullivan, E.J., Cronin, M.T., Homes, C.P. and Fodor, S., PNAS, 91, 5022 (1994).Google Scholar
4. Marshall, A. & Hodgson, J. DNA chips: an array of possibilities, Nature Biotechnol., 16, 27 (1998).Google Scholar
5. Pividori, M.I., Merkoçi, A. and Alegret, S., Biosens. Bioelectron., 15, 291 (2000).Google Scholar
6. Wang, J., Nucl. Acids Res., 28, 3011 (2000).Google Scholar
7. Pollak, E.S., Feng, L., Ahadian, H. & Fortina, P., Ital. Heart J., 2, 568 (2001).Google Scholar
8.R. Lenigk, M. Carles, N.Y. , Ip and Sucher, N.J., Langmuir 17, 2497 (2000).Google Scholar
9. Joos, B., Kuster, H. and Cone, R., Anal. Biochem. 247, 96 (1997).Google Scholar
10. Rogers, Y., Baucom, P. J., Huang, Z.J., Bogdanov, V., Anderson, S. and Jacino, M.T., Anal. Biochem. 266, 23 (1999).Google Scholar
11. Strother, T., Cai, W., Zhao, X., Hamers, R.J. and Smith, L.M., J. Am. Chem. Soc. 122, 1205 (2000).Google Scholar
12. Chrisey, L.A., O'Ferrall, C.E., Spargo, B.J., Dulcey, C.S. and Calvert, J.M., Nucl. Acids Res. 15: 3040 (1996).Google Scholar
13. Chrisey, L.A., Lee, G.U. and O'Ferrall, C.E., Nucl. Acids Res. 15: 3031 (1996).Google Scholar
14. Okamoto, T., Suzuki, T. and Yamamoto, N., Nature Biotechnol., 18, 438 (2000).Google Scholar
15. Edman, C.F., Raymond, D.E., Wu, D.J., Tu, E., Sosnowski, R.G., Butler, W.F., Nerenberg, M. and Heller, M.J., Nucl. Acids Res. 25, 4907 (1997).Google Scholar
16. Sosnowski, R.G., Tu, E., Butler, W.F., O'Connell, J.P. and Heller, M.J., PNAS 94, 1119 (1997).Google Scholar
17. Radtkey, R., Feng, L., Muralhidar, M., Melaine, D., Canter, D., DiPierro, D., Fallon, S., Tu, E., McElfresh, K., Nerenberg, M. and Sosnowski, R., Nucl. Acids Res. 28, (2000) e17.Google Scholar
18. Fixe, F., Faber, A., Gonçalves, D., Prazeres, D.M.F., Cabeça, R., Chu, V., Ferreira, G. and Conde, J.P., Mat. Res. Soc. Symp. Proc. 723, O2.3.1 (2002).Google Scholar
19. Balladur, V., Theretz, A. and Mandrand, B., J. Colloid Interface Sci. 194, (1997) 408418.Google Scholar