Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-05T12:45:44.840Z Has data issue: false hasContentIssue false

Elastic Properties of Several Silicon Nitride Films

Published online by Cambridge University Press:  01 February 2011

Xiao Liu
Affiliation:
[email protected], Naval Research Laboratory, Code 7130, 4555 Overlook Ave, SW, Washington, DC, 20375, United States, 202-404-8065, 202-404-1721
Thomas H Metcalf
Affiliation:
[email protected], Naval Research Laboratory, Washington, DC, 20375, United States
Qi Wang
Affiliation:
[email protected], National Renewable Energy Laboratory, Golden, CO, 80401, United States
Douglas M Photiadis
Affiliation:
[email protected], Naval Research Laboratory, Washington, DC, 20375, United States
Get access

Abstract

We have measured the internal friction (Q-1) of amorphous silicon nitride (a-Si3Nx) films prepared by a variety of methods, including low-pressure chemical-vapor deposition (LPCVD), plasma-enhanced chemical-vapor deposition (PECVD), and hot-wire chemical-vapor deposition (HWCVD) from 0.5 K to room temperature. The measurements are made by depositing the films onto extremely high-Q silicon double paddle oscillator substrates with a resonant frequency of ~5500 Hz. We find the elastic properties of these a-Si3N4 films resemble those of amorphous silicon (a-Si), demonstrating considerable variation, depending on the film growth methods and post deposition annealing. The internal friction for most of the films shows a broad temperature-independent plateau below 30 K, characteristic of amorphous solids. The values of Q-1, however, vary from film to film in this plateau region by more than one order of magnitude. This is typical for tetrehedrally bonded amorphous thin films, like a-Si, a-Ge, and a-C. The PECVD films have the highest Q-1 just like an ordinary amorphous solid, while LPCVD films have an internal friction more than one order of magnitude lower. All the films show a reduction of Q-1 after annealing at 800°C, even for the LPCVD films which were prepared at 850°C. This can be viewed as a reduction of structural disorder.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Riley, F. L., J. Am. Ceram. Soc. 83, 245 (2000).Google Scholar
2 Giazotto, F., Heikkila, T. T., Luukanen, A., Savin, A. M., and Pekola, J. P., Rev. Mod. Phys. 78, 217 (2006).Google Scholar
3 Walmsley, B. A., Liu, Y., Hu, X. Z., Bush, M. B., Winchester, K. J., Martyniuk, M., Dell, J. M., and Faraone, L., J. Appl. Phys. 98, 044904 (2005).Google Scholar
4 Profunser, D. M., Vollmann, J., and Dual, J., Ultrasonics, 42, 641 (2004).Google Scholar
5 Liu, X., Photiadis, D. M., Wu, H. D., Chrisey, D. B., Pohl, R. O., and Crandall, R. S., Philos. Mag. B 82, 185 (2002).Google Scholar
6 Liu, X., Metcalf, T.H., Mosaner, P., and Miotello, A., Appl. Surf. Sci. (in press).Google Scholar
7 Jr., B. E. White, Pohl, R. O. in Thin Films: Stresses and Mechanical Properties V, edited by Baker, S. P., Ross, C. A., Townsend, P. H., Volkert, C. A., and Borgesen, P., (Mat. Res. Soc. Symp. Proc. 356, Pittsburgh, PA, 1995) pp. 567573.Google Scholar
8 Carlotti, G., Colpani, P., Piccolo, D., Santucci, S., Senez, V., Socino, G., and Verdini, L., Thin Solid Films, 414, 99 (2002).Google Scholar
9 Khan, A., Philip, J., and Hess, P., J. Appl. Phys. 95, 1667 (2004).Google Scholar
10 Chuang, W., Luger, T., Fettig, R. K., and Ghodssi, R., J. Microelectromech. Syst., 13, 870 (2004).Google Scholar
11 Pohl, R. O., Liu, X., and Thompson, E., Rev. Mod. Phys. 74, 991 (2002).Google Scholar
12 Liu, X., Jr., B. E. White, Pohl, R. O., Iwanizcko, E., Jones, K. M., Mahan, A. H., Nelson, B. N., Crandall, R. S., and Veprek, S., Phys. Rev. Lett. 78, 4418 (1997).Google Scholar
13 Cleve, J. E. Van, Ph.D. thesis, Cornell University, 1991.Google Scholar
14 Beshkov, G., Dimitrov, D.B., Velchev, N., Petrov, P., Ivanov, B., Zambov, L., and Dimitrova, T., Vacuum, 58, 509 (2000).Google Scholar
15 Kaya, C., Ma, T. P., Chen, T. C., Barker, R. C., J. Appl. Phys. 64, 3949 (1988).Google Scholar