Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T15:41:58.936Z Has data issue: false hasContentIssue false

Elastic Properties of Normal and Binormal Helical Nanowires

Published online by Cambridge University Press:  01 February 2011

Alexandre Fontes da Fonseca
Affiliation:
[email protected], University of Sao Paulo, Fisica Matematica, Rua do Matao, Travessa R, 187. CEP 05508-090 Cidade Universitaria, Caixa Postal 66318, Sao Paulo, 05508-090, Brazil, +55 11 3813-4257, +55 11 30916833
C P Malta
Affiliation:
[email protected], Universidade de São Paulo, Departamento de Física Matemática, Rua do Matão, Travessa R, 187. CEP 05508-090 Cidade Universitaria, Caixa Postal 66318, Sao Paulo, 05508-090, Brazil
Douglas S Galvão
Affiliation:
[email protected], UNICAMP, Departamento de Física Aplicada, Universidade Estadual de Campinas, Unicamp, Campinas, 13083-970, Brazil
Get access

Abstract

A helical nanowire can be defined as being a nanoscopic rod whose axis follows a helical curve in space. In the case of a nanowire with asymmetric cross section, the helical nanostructure can be classified as normal or binormal helix, according to the orientation of the cross section with respect to the helical axis of the structure. In this work, we present a simple model to study the elastic properties of a helical nanowire with asymmetric cross section. We use the framework of the Kirchhoff rod model to obtain an expression relating the Hooke's constant, h, of normal and binormal nanohelices to their geometric features. We also obtain the Young's modulus values. These relations can be used by experimentalists to evaluate the elastic properties of helical nanostructures. We showed that the Hooke's constant of a normal nanohelix is higher than that of a binormal one. We illustrate our results using experimentally obtained nanohelices reported in the literature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Iijima, S., Nature (London) 354, 56 (1991).CrossRefGoogle Scholar

2 Baughman, R. H., Zakhidov, A. A., and de Heer, W. A., Science 297, 787 (2002).CrossRefGoogle Scholar

3 McIlroy, D. N., Alkhateeb, A., Zhang, D., Aston, D. E., Marcy, A. C. and Norton, M. G., J.Phys.: Condens. Matter 16, R415 (2004).Google Scholar

4 Korgel, B. A., Science 309, 1693 (2005).CrossRefGoogle ScholarPubMed

5 Gao, P. X., Ding, Y., Mai, W., Hughes, W. L., Lao, C. and Wang, Z. L., Science 309, 1700 (2005).CrossRefGoogle Scholar

6 Nakamatsu, K., Igaki, J., Nagase, M., Ichihashi, T. and Matsui, S., Microelectronic Engineering 83, 808 (2006).CrossRefGoogle Scholar

7 Volodin, A., Ahlskog, M., Seynaeve, E., Van Haesendonck, C., Fonseca, A. and Nagy, J. B., Phys. Rev. Lett. 84, 3342 (2000).CrossRefGoogle Scholar

8 Da Fonseca, A. F. and Galvao, D. S., Phys. Rev. Lett. 92, 175502 (2004).CrossRefGoogle Scholar

9 Da Fonseca, A. F., Malta, C. P. and Galvao, D. S., Nanotechnology 17, 5620 (2006).CrossRefGoogle Scholar

10 Lectures on Classical Differential Geometry, Struik, D. J., 2nd Edition, Ed.; Addison-Wesley: Cambridge, 1961.Google Scholar

11 Dill, E. H., Arch. Hist. Exact. Sci. 44, 2 (1992).CrossRefGoogle Scholar