Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T01:37:49.861Z Has data issue: false hasContentIssue false

Elastic Properties of Nano–Thin Films by Use of Atomic Force Acoustic Microscopy

Published online by Cambridge University Press:  31 January 2011

Malgorzata Kopycinska-Müller
Affiliation:
[email protected], TU-Dresden, IAVT, Dresden, Germany
Andre Striegler
Affiliation:
[email protected], TU-Dresden, IAVT, Dresden, Germany
Arnd Hürrich
Affiliation:
[email protected], IPMS, Dresden, Germany
Bernd Köhler
Affiliation:
[email protected], IZFP-D, Dresden, Germany
Norbert Meyendorf
Affiliation:
[email protected], IZFP-D, Dresden, Germany
Klaus Jürgen Wolter
Affiliation:
[email protected], TU-Dresden, IAVT, Dresden, Germany
Get access

Abstract

Atomic force acoustic microscopy (AFAM) is a non-destructive method able to determine the indentation modulus of a sample with high lateral and depth resolution. We used the AFAM technique to measure the indentation modulus of film-substrate systems Msam and then to extract the value of the indentation modulus of the film Mf. The investigated samples were films of silicon oxide thermally grown on silicon single crystal substrates by use of dry and wet oxidation methods. The thickness of the samples ranged from 7 nm to 28 nm as measured by ellipsometry. Our results clearly show that the values of Msam obtained for the film-substrate systems depended on the applied static load and the film thickness. The observed dependency was used to evaluate the indentation modulus of the film. The values obtained for Mf ranged from 77 GPa to 95 GPa and were in good agreement with values reported in the literature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature

1. Binning, G. and Quate, C. F., Phys. Rev. Lett. 56, p.930 (1986).10.1103/PhysRevLett.56.930Google Scholar
2. Burnham, N. A., Colton, R. J., J. Vac. Sci. Technol. A 7, p. 2906 (1989).10.1116/1.576168Google Scholar
3. Dimitriadis, E. K., Horkay, F., Maresca, J., Kachar, B., and Chadwick, R. S., Biophys. J. 82, p. 2798 (2002).10.1016/S0006-3495(02)75620-8Google Scholar
4. Tranchida, D., Piccarolo, S., Macromol. Rapid. Commun. 26, p. 1800 (2005).10.1002/marc.200500538Google Scholar
5. Joyce, S. A. and Houston, J. E., Rev. Sci. Instrum. 62, p. 710 (1991).10.1063/1.1142072Google Scholar
6. Geer, R. E., Kolosov, O. V., Briggs, G. A. D., and Shekhawat, G. S., J. Appl. Phys. 81, p. 4549 (2002).10.1063/1.1447330Google Scholar
7. Cuberes, M. T., Assender, H. E., Briggs, G. A. D., and Kolosov, O. V., J. Phys. D. Appl. Phys. 33, p. 2347 (2000).10.1088/0022-3727/33/19/301Google Scholar
8. Yamanaka, K., Maruyama, Y., Tsuji, T., and Nakamoto, K., Appl. Phys. Lett. 78, p. 1939 (2001).10.1063/1.1357540Google Scholar
9. Rabe, U., Janser, K., and Arnold, W., Rev. Sci. Instrum. 67, p. 3281 (1996).10.1063/1.1147409Google Scholar
10. Hurley, D. C., Shen, K., Jennett, N. M., and Turner, J. A., J. Appl. Phys. 94, p. 2347 (2003).10.1063/1.1592632Google Scholar
11. Hurley, D. C., Kopycinska-Müller, M., Langois, E. D., Kos, A. B., and Barbossa, N. III , Appl. Phys. Lett. 89, p. 021911 (2006).10.1063/1.2221404Google Scholar
12. Rabe, U., Amelio, S., Kester, E., Scherer, V., Hirsekorn, S., and Arnold, W., Ultrasonics 38, p. 430 (2000).10.1016/S0041-624X(99)00207-3Google Scholar
13. Parlak, Z. and Degertekin, F. L., J. Appl. Phys. 103, p. 114910 (2008).10.1063/1.2936881Google Scholar
14. Kopycinska-Müller, M., Geiss, R.H., Müller, J., and Hurley, D.C., Nanotechnology, 16, p. 703, (2005).10.1088/0957-4484/16/6/013Google Scholar
15. Johnson, K. L., Contact mechanics, (Cambridge University Press, Cambridge UK, 1985), p. 9096.10.1017/CBO9781139171731Google Scholar
16. Vlassak, J. J. and Nix, W. D., Phil. Mag. A 67, p. 1045 (1993).10.1080/01418619308224756Google Scholar
17. Swein, M. V. and Weppelmann, E. R., Mat. Res. Soc. Symp. Proc. 308, 177, (1993).10.1557/PROC-308-177Google Scholar
18. King, R. B., Int. J. Solids Structures 23, p. 1657 (1987).10.1016/0020-7683(87)90116-8Google Scholar
19. Rabe, U., Kopycinska, M., Hirsekorn, S., Saldana, J.M., Schneider, G.A., and Arnold, W., J. Phys. D-Appl. Phys. 35, p. 2621 (2002).10.1088/0022-3727/35/20/323Google Scholar
20. Ni, H., Li, X., and Gao, H., Appl. Phys. Lett. 88, p. 043108–1 (2006).10.1063/1.2165275Google Scholar