Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T15:36:13.309Z Has data issue: false hasContentIssue false

Elastic Properties and Structural Evolution of AgNi Superlattices

Published online by Cambridge University Press:  15 February 2011

B. Rodmacq
Affiliation:
Laboratoire de Métallurgie Physique Service de Physique des Matériaux et Microstructures Département de Recherche Fondamentale de la Matièe Condensée Centre d'Etudes Nucléaires, 85X, 38041 Grenoble Cédex, France
V. Pelosin
Affiliation:
Laboratoire de Métallurgie Physique Service de Physique des Matériaux et Microstructures Département de Recherche Fondamentale de la Matièe Condensée Centre d'Etudes Nucléaires, 85X, 38041 Grenoble Cédex, France
J. Hillairet
Affiliation:
Laboratoire de Métallurgie Physique Service de Physique des Matériaux et Microstructures Département de Recherche Fondamentale de la Matièe Condensée Centre d'Etudes Nucléaires, 85X, 38041 Grenoble Cédex, France
Get access

Abstract

Silver-nickel multilayers were prepared by sputtering at 100 K. X-ray diffraction, electrical resistivity and dimensional variation measurements were performed to structurally characterize these stratified materials, both in the as-prepared state and during the course of annealing cycles. Clearly, polycrystalline superlattices with marked (111) texture perpendicular to the strata are formed. We studied the elastic properties of these superlattices by performing uniaxial tension tests. No deviation from linear elasticity was observed, whatever the period. Young's modulus was found to be 130±15 GPa for all the periods studied. Thus no significant functional dependence of Young's modulus on the stacking periodicity exists in the AgNi superlattice, in the range of periods explored, 2.6 to 18 nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Schuller, I. K, Fartach, A., Grimsditch, M., MRS Bulletin, 33, 1990 Google Scholar
[2] Brandt, R.G., Materials Science and Engineering, B6, 95, 1990 CrossRefGoogle Scholar
[3] Rodmacq, B., Hillairet, J., Laugier, J. and Chamberod, A., J. Physics Condensed Matter 2, 95, 1990 CrossRefGoogle Scholar
[4] Rodmacq, B., submitted to J. Appl. Phys.Google Scholar
[5] Sondheimer, E.H., Adv. Phys. 1, 1, 1952 CrossRefGoogle Scholar
[6] Tsakalakos, T., Hilliard, J.E., J. Appl. Phys. 54, 734, 1983 CrossRefGoogle Scholar
[7] Moreau, A., Ketterson, J.B. and Mattson, J., Appl. Phys. Letters, 20, 1959, 1990 Google Scholar
[8] Moreau, A., Ketterson, J.B. and Davis, B., J. Appl. Phys. 68, 1622, 1990 CrossRefGoogle Scholar
[9] Baral, D., Hilliard, J.E., Ketterson, J.B., Miyano, K., J. Appl. Phys. 53, 3552, 1982 CrossRefGoogle Scholar
[10] Carlotti, G., Private communication.Google Scholar