Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T07:23:15.002Z Has data issue: false hasContentIssue false

Einstein Rzlation in Quantum Wires of Tetragonal Sediconduc Tors

Published online by Cambridge University Press:  28 February 2011

Kamakhya P. Ghatak
Affiliation:
Department of Electronics and Telecommunication Engineering, University of Jadavpur, Calcutta-700032, INDIA
B. De
Affiliation:
13 Little Brook Road, CT- 06820, DARIEN, U. S. A.
M. Mondal
Affiliation:
Departnent of Physics, Y.S.Palpara College, P.O.Box. 721458, Midnapore, West Bengal, INDIA
S. N. Biswas
Affiliation:
Department of 3lectronics and Telecommunication Engineering, B.E.College, Shibpur, Howrah-711103, West Bengal, INDIA
Get access

Abstract

We have studied the Einstein relation for the diffusivity. mobility ratio (7PT) on the basis of a newly derived electron energy spectrum in QW f tetragonal semiconductors, within the framework of K. P method by considering all types of anisotropies of the energy band parameters. It is found, taking n-Cd3 As2 as an example that the DUTZ increases with electron concentration and decreases with film thickness in an oscillatory manner respectively. The theoretical results are in good aoreement with the suggested experimental method of determining the DMR in degenerate semiconductors having arbitrary dispersion law.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chang, L.L. and Ploog, K., Molecular Beam, Epitaxy and Feterostructures, (Niyhoff, Dordrecht, 1985).Google Scholar
2. Roukes, M.L., Scherer, A., Allen, S.J., Carighead, H.G. Chang, J.Y. and Howard, R.E., Phys. Rev. Letts. 96, 3A2 (1987).Google Scholar
3. Linch, N. T., Festörperprobleme, 23 227 (1983).Google Scholar
4. Arakawa, Y. and Sakaci, H., Appl. Phys. lefts. 40, 939 (1982).Google Scholar
5. Suemune, I. and Coldren, L.A., IEME J. Quantum Electronics 49, 1178 (1988).Google Scholar
6. Landsberg, P.T., Eur. J. Phys, 9, 213 (1981); H. Kroemer, IEEE Trans. ED-25, 850 (1978);- B. Mitra, A. Ghoshal and K.P.Ghatak, Phy. Stat. Sol. (b) 154, K147 (1989); B.Y.Mitra and K.P.Ghatak, Solid State Electronics 32, 810 (1989); S.T.H. Abidi and S.N. Zohlamad, Solid State Electronics 27, 1153 (1984).Google Scholar
7. Ghatek, W.P. and Mondal, M., Thin Solid Films, 148, 219(1987).Google Scholar
8. Shay, J.L. and Wernick, J.H., Ternary Chalcopyrite Semiconductors: Growth, Growth, Electronic Properties and Applications (Pergamon Press, London, 1975).Google Scholar
9. Ghatak, K.P. and Mondal, M., J. Appl. Phys. 66, 3056(1989).Google Scholar
10. Tsidilkovski, I.M., Band structure of semiconductors (Pergamon Press, London, 1982) p. 313; W. Zawadzki Springer Series of Solid State Sciences, 3, 79(1384).Google Scholar
11. Zawadzki, W., Adv. Phys. 23 435 (1974).Google Scholar
12. Nag, B.R., Electron Transport in Compound Semiconductors (Springer-Verlag, Heidelberg, 1980).Google Scholar
13. Elfres, E.L., J. Exp. and Theor. Phys. 101, 702 (1990).Google Scholar
14. Bodnar, J., Proc. of the Internat. Conf. on Physics of Narrow-Gap Semiconductors, Warsaw (Polish Scientific, Warsaw, 1978) p. 403.Google Scholar
15. Kamin, T.I. and Muller, R.S., Solid State Electronics 10, 423 (1967); G.D. Hatchel and A.E. Ruchli, IEEE Trans. ED-15, 437 (1968).Google Scholar