Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T02:22:39.479Z Has data issue: false hasContentIssue false

Efficient Stacked OLED processed by Organic Vapor Phase Deposition (OVPD)

Published online by Cambridge University Press:  22 May 2015

M. Brast
Affiliation:
Device Technology, RWTH Aachen University, Sommerfeldstr. 24, 52074 Aachen, Germany
S. Axmann
Affiliation:
Device Technology, RWTH Aachen University, Sommerfeldstr. 24, 52074 Aachen, Germany
M. Slawinski
Affiliation:
Device Technology, RWTH Aachen University, Sommerfeldstr. 24, 52074 Aachen, Germany
M. Weingarten
Affiliation:
Device Technology, RWTH Aachen University, Sommerfeldstr. 24, 52074 Aachen, Germany
F. Lindla
Affiliation:
Philips GmbH – Business Center OLED Lighting, Philipsstr. 8, 52068 Aachen, Germany
M. Bösing
Affiliation:
Philips GmbH – Business Center OLED Lighting, Philipsstr. 8, 52068 Aachen, Germany
M. Heuken
Affiliation:
Device Technology, RWTH Aachen University, Sommerfeldstr. 24, 52074 Aachen, Germany AIXTRON SE, Dornkaulstr. 2, 52134 Herzogenrath, Germany
A. Vescan
Affiliation:
Device Technology, RWTH Aachen University, Sommerfeldstr. 24, 52074 Aachen, Germany
H. Kalisch
Affiliation:
Device Technology, RWTH Aachen University, Sommerfeldstr. 24, 52074 Aachen, Germany
Get access

Abstract

The development of efficient large-area organic light emitting diodes (OLED) requires reliable and easily processable charge generation layers (CGL) with low excess voltage drop and high optical transparency. OVPD offers the advantage of a precise control of layer morphology, composition and thickness and is a powerful method for the deposition of advanced OLED designs. In this work, electrical doping of organic semiconductors using OVPD is investigated and applied to stacked OLED utilizing inorganic/organic CGL. The organic p-type dopant NDP-9 of Novaled GmbH is used for doping the hole transport material N,N‘-diphenyl-N,N‘-bis(1-naphthylphenyl)-1,1‘-biphenyl-4,4‘-diamine (α-NPD) in an AIXTRON OVPD tool. A doping concentration of 8 vol.% of NDP-9 in α-NPD is found optimal for hole injection as well as conductivity. This dopant concentration was employed in CGL with the structure: electron transport material/LiF/Al/α-NPD:8 vol.% NDP-9. External quantum efficiencies (EQE) of 15%, 35% and 50% and luminous efficiencies of 37 lm/W, 45 lm/W and 45 lm/W at 1000 cd/m2 are demonstrated for single, double- and triple-unit green phosphorescent OLED, respectively.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Forrest, S. R., Burrows, P. E., Shen, Z., Gu, G., Bulovic, V., Thompson, M.E., Synth. Met. 91, 913 (1997).CrossRefGoogle Scholar
Kanno, H., Giebink, N. C., Sun, Y., Forrest, S. R., Appl. Phys. Lett. 89, 023503 (2006).CrossRefGoogle Scholar
Hiroshi, K., Yuji, H., Kazuki, N., Okumoto, K., Saito, N., Kanno, H., et al. , Jpn. J. Appl. Phys. 45, 92199223 (2006).Google Scholar
Liao, L. S., Klubek, K. P., Tang, C. W., Appl. Phys. Lett. 84, 167 (2004).CrossRefGoogle Scholar
Chang, C.-C., Chen, J.-F., Hwang, S.-W., Chen, C. H., Appl. Phys. Lett. 87, 253501 (2005).CrossRefGoogle Scholar
Guo, F., Ma, D., Appl. Phys. Lett. 87, 173510 (2005).CrossRefGoogle Scholar
Zhang, H. M., Choy, W. C. H., Org. Electron. 9, 964967 (2008).CrossRefGoogle Scholar
Meyer, J., Kröger, M., Hamwi, S., Gnam, F., Riedl, T., Kowalsky, W., et al. , Appl. Phys. Lett. 96, 193302 (2010).CrossRefGoogle Scholar
Kanno, H., Holmes, R. J., Sun, Y., Kena-Cohen, S., Forrest, S. R., Adv. Mater. 18, 339342 (2006).CrossRefGoogle Scholar
Liao, L. S., Klubek, K. P., Appl. Phys. Lett. 92, 223311 (2008).CrossRefGoogle Scholar
Gao, W., Kahn, A., J. Appl. Phys. 94, 359 (2003).CrossRefGoogle Scholar
Lee, S., Lee, J.-H., Lee, J.-H., Kim, J.-J., Adv. Funct. Mater. 22, 855860 (2012).CrossRefGoogle Scholar
Chiba, T., Pu, Y.-J., Miyazaki, R., Nakayama, K., Sasabe, H., Kido, J., Org. Electron. 12, 710715 (2011).CrossRefGoogle Scholar
Brast, M., Lindla, F., Boesing, M., Bertram, D., Keiper, D., Heuken, M., et al. , MRS Proc. 1402, 16 (2012).CrossRefGoogle Scholar
Lindla, F., Boesing, M., Zimmermann, C., Jessen, F., van Gemmern, P., Bertram, D., et al. , MRS Proc. 1154, 1116 (2011).Google Scholar
Merck, KGaA, Darmstadt, Germany, Material Datasheet (2011).Google Scholar
Ding, X. M., Hung, L. M., Cheng, L. F., Deng, Z. B., Hou, X. Y., Lee, C. S., et al. , Appl. Phys. Lett. 76, 2704 (2000).CrossRefGoogle Scholar
Yu, G., Zhang, C., Heeger, a. J., Appl. Phys. Lett. 64, 1540 (1994).CrossRefGoogle Scholar
Hung, L. S., Zhang, R. Q., He, P., Mason, G., J. Phys. D. Appl. Phys. 35, 103107 (2002).CrossRefGoogle Scholar
Heil, H., Steiger, J., Karg, S., Gastel, M., Ortner, H., von Seggern, H., et al. , J. Appl. Phys. 89, 420424 (2001).CrossRefGoogle Scholar
Mason, M. G., Tang, C. W., Hung, L.-S., Raychaudhuri, P., Madathil, J., J. Appl. Phys. 89, 2756 (2001).CrossRefGoogle Scholar
Diez, C., Reusch, T. C. G., Lang, E., Dobbertin, T., Brütting, W., J. Appl. Phys. 111, 103107 (2012).CrossRefGoogle Scholar
Ante, F., Kälblein, D., Zschieschang, U., Canzler, T.W., Werner, A., Takimiya, K., et al. , Small. 7, 1186–91 (2011).CrossRefGoogle Scholar
Kröger, M., Hamwi, S., Meyer, J., Dobbertin, T., Riedl, T., Kowalsky, W., et al. , Phys. Rev. B. 75, 235321 (2007).CrossRefGoogle Scholar
Brütting, W., Berleb, S., Mückel, A.G., Synth. Met. 122, 99104 (2001).CrossRefGoogle Scholar
Lee, J.-H., Kim, J.-J., Phys. Status Solidi. 209, 13991413 (2012).CrossRefGoogle Scholar
Matsushima, T., Jin, G.-H., Kanai, Y., Yokota, T., Kitada, S., Kishi, T., et al. , Org. Electron. 12, 520528 (2011).CrossRefGoogle Scholar
Olthof, S., Mehraeen, S., Mohapatra, S. K., Barlow, S., Coropceanu, V., Brédas, J.-L., et al. , Ultralow Phys. Rev. Lett. 109, 176601 (2012).CrossRefGoogle Scholar
Lee, J.-H., Lee, J., Kim, Y.H., Yun, C., Lüssem, B., Leo, K., Org. Electron. 15, 1621 (2014).CrossRefGoogle Scholar
Zhou, J., Zhou, Y., Zhao, J., Wu, C., Ding, X., Hou, X., Phys. Rev. B. 75, 153201 (2007).CrossRefGoogle Scholar
Arkhipov, V., Heremans, P., Emelianova, E., Bässler, H., Phys. Rev. B. 71, 045214 (2005).CrossRefGoogle Scholar
Cho, Y., Choi, Y. K., Sohn, S. H., Appl. Phys. Lett. 89, 051102 (2006).CrossRefGoogle Scholar
Sun, J. X., Zhu, X. L., Peng, H. J., Wong, M., Kwok, H. S., Appl. Phys. Lett. 87, 093504 (2005).CrossRefGoogle Scholar