Published online by Cambridge University Press: 30 June 2011
We prepare Nd-Bi codoped zeolites by a method consisting of a simple ion-exchange process and subsequent high-temperature annealing. The emission covers the range of 970∼1450 nm, corresponding to the electronic transitions of Nd3+ ions and Bi-related active centers (BiRAC), respectively. The introduction of Bi distinctly broadens the excitation band of Nd3+ in the visible region, and the lifetime of Nd3+ reaches as long as 354 μs. In the zeolite matrix, Bi ions exist as BiRAC and Bi oxide agglomerates. The former one act as a sensitizer of Nd3+ ions, and the latter one act as a blockage to avoid the quenching effect of coordinated water, which enable Nd3+ ions to show efficient near-infrared (NIR) emission even the zeolites contain large amount of coordinated water. The excellent optical and structural properties make these NIR emitting nanoparticles promising in application as laser materials and biological probes.