Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-28T23:09:14.020Z Has data issue: false hasContentIssue false

Efficient Carbon Nanotube Field Emitter using Electrospun Carbon Nanofibers as a Flexible Electrode

Published online by Cambridge University Press:  31 January 2011

Hidetoshi Matsumoto
Affiliation:
[email protected]@o.cc.titech.ac.jp, Tokyo Institute of Technology, Department of Organic and Polymeric Materials, 2-12-1-S8-27 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan
Kenichi Suzuki
Affiliation:
[email protected], Tokyo Institute of Technology, Department of Organic and Polymeric Materials, Tokyo, Japan
Kazuma Tsuboi
Affiliation:
[email protected], Tokyo Institute of Technology, Department of Organic and Polymeric Materials, Tokyo, Japan
Mie Minagawa
Affiliation:
[email protected], Tokyo Institute of Technology, Department of Organic and Polymeric Materials, Tokyo, Japan
Akihiko Tanioka
Affiliation:
[email protected], Tokyo Institute of Technology, Department of Organic and Polymeric Materials, Tokyo, Japan
Yasuhiko Hayashi
Affiliation:
[email protected], Nagoya Institute of Technology, Department of Frontier Materials, Nagoya, Japan
Kazuyuki Fukuzono
Affiliation:
[email protected], Seiwa Electric Mfg. Co. Ltd., Joyo, Japan
Gehan A.J. Amaratunga
Affiliation:
[email protected], University of Cambridge, Deparrtment of Engineering, Cambridge, United Kingdom
Get access

Abstract

Thermal-stable, conductive, and flexible carbon fabric (CF), which is composed of thin carbon fibers prepared by electrospinning, was used for the substrate of carbon nanotube (CNT) field emitter arrays. The field emitter arrays were prepared by chemical vapor deposition (CVD). The current density-electric field characteristics revealed that the CNT field emitter arrays on CF produced a higher current density at a lower turn-on voltage compared to ones on a Si substrate. This emitter integrated with a gate electrode based on hierarchy-structured carbon materials, CNTs on CF, can be used for light sources, displays, and other electronic devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Iijima, S. Nature (London) 354, 56 (1991).Google Scholar
2 Utsumi, T. IEEE Trans. Electron Devices 38, 2276 (1991).Google Scholar
3 Minoux, E. Groening, O. Teo, K. K. Dalal, S. H. Gangloff, L. Schnell, J. P. Hudanski, L. Bu, I. Y. Y. Vincent, P. Legagneux, P. Amaratunga, G. A. J. and Milne, W. I. Nano Lett. 5, 2135 (2005).Google Scholar
4 Murakami, H., Hirakawa, M. Tanaka, C. and Yamakawa, H. Appl. Phys. Lett. 76, 1776 (2000).Google Scholar
5 Yue, Z. Qiu, Q. Gao, B. Cheng, Y. Zhang, J. Shimoda, H. Chang, S. Lu, J. P. and Zhou, O. Appl. Phys. Lett. 81, 355 (2002).Google Scholar
6 Reneker, D.H. Chun, I. Nanotechnology 7, 216 (1996).Google Scholar
7 Li, D. Xia, Y. Adv. Mater. (Weinheim. Ger.) 16, 1151 (2004).Google Scholar
8 Suzuki, K. Matsumoto, H. Minagawa, M. Kimura, M. and Tanioka, A. Polym. J. (Tokyo Japan) 39, 1128 (2007).Google Scholar
9 Sim, H. S. Lau, S. P. Yang, H. Y. Ang, L. K. Tanemura, M. and Yamaguchi, K. Appl. Phys. Lett. 90, 143103 (2007).Google Scholar
10 Robrieux, B. Faure, R. and Dussauley, J.-P. Seances, C. R. Acad. Sci., Ser. B 278, 659 (1974).Google Scholar
11 Suzuki, K. Matsumoto, H. Minagawa, M. Tanioka, A. Hayashi, Y. Fukuzono, K. Amaratunga, G.A.J., Appl. Phys. Lett. 93, 053107 (2008).Google Scholar