Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T07:45:38.638Z Has data issue: false hasContentIssue false

Efficient 18 Å/s Solar Cells with All Silicon Layers Deposited by Hot-Wire Chemical Vapor Deposition

Published online by Cambridge University Press:  17 March 2011

Qi Wang
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401, USA
Eugene Iwaniczko
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401, USA
Yueqin Xu
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401, USA
Wei Gao
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401, USA
Brent P. Nelson
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401, USA
A.H. Mahan
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401, USA
R.S. Crandall
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401, USA
Howard M. Branz
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401, USA
Get access

Abstract

Efficient hydrogenated amorphous silicon (a-Si:H) n-i-p solar cells have been fabricated with all doped and undoped a-Si:H layers deposited by hot-wire chemical vapor deposition (HWCVD). The total deposition time of all layers, except the top ITO-contact, is less than 4 minutes. On an untextured stainless steel (SS) substrate, an initial efficiency of 7.12% is reached, with a stable efficiency of 5.4% after 1000 hours 1 sun light soaking. This initial efficiency is reached by incorporating into the p/i interface about 60 Å of intrinsic a-Si:H “edge” material grown under conditions near the transition to microcrystallinity. This edge layer increases the cell's fill factor from 0.60 to 0.68 and the best open-circuit voltage is about 0.88 V. Using textured Ag/ZnOcoated SS supplied by United Solar Corporation, preliminary results of an all-HWCVD solar cell give an initial efficiency of 8.7 %.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yang, J., Sugiyama, S., and Guha, S., Mat. Res. Soc. Symp. Proc. 507 157 (1998).Google Scholar
2. Mahan, A.H., Reedy, R.C. Jr, Iwaniczko, E., Qi Wang, Nelson, B.P., Xu, Y., Gallagher, A. C., Branz, H.M., Crandall, R.S., Yang, J., and Guha, S., Mat. Res. Soc. Symp. Proc. 507, 119 (1998).Google Scholar
3. Wang, Qi, Iwaniczko, E., Xu, Yueqin, Nelson, B., and Mahan, H., Mat. Res. Soc. Symp. Proc. 557, 163 (1999).Google Scholar
4. Nelson, B., Crandall, R.S., Iwaniczko, E., Mahan, A. H., Wang, Qi, Xu, Yueqin, and Gao, Wei, Mat. Res. Soc. Symp. Proc. 557, 97 (1999).Google Scholar
5. Yue, Guozhen, Lorentzen, J. D., Lin, Jing, Han, Daxing and Wang, Qi, Appl. Phys. Lett. 75, 492 (1999).Google Scholar
6. Wang, Qi, Yue, Guozhen, Li, Jing, and Han, Daxing, Solid State Commun. 113, 175 (1999).Google Scholar
7. Han, Daxing, Yue, Guozhen, Lorentzen, J. D., Lin, Jing, Habuchi, H., and Wang, Qi, J. Appl. Phys. 87, 1882 (2000).Google Scholar
8. Kattwinkel, A., Braunstein, R., and Wang, Qi, Mat. Res. Soc. Symp. Proc. 557, 543 (1999).Google Scholar
9. Tsu, D.V., Chao, B.S., Ovshinshy, S.R., Guha, S., and Yang, J., Appl. Phys. Lett. 71, 1317 (1997).Google Scholar
10. Yang, L., Chen, L., Wiedemann, S. and Catalano, A., Mat. Res. Soc. Symp. Proc. Proc. 283, 462 (1992).Google Scholar
11. Yang, J., and Guha, S., Mat. Res. Soc. Symp. Proc. 557, 239 (1999).Google Scholar
12. Koh, J., Lee, Y., Fujiwara, H., Wronski, C. R., Collins, R.W., Appl. Phys. Lett. 73, 1526 (1998).Google Scholar
13. Brogueira, P., Chu, V., Ferro, A.C., and Conde, J.P., JVSTA 15, 2968 (1997).Google Scholar