Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T16:33:00.697Z Has data issue: false hasContentIssue false

Efficacy of Damage Annealing in Advanced Ultra-Shallow Junction Processing

Published online by Cambridge University Press:  01 February 2011

Paul J Timans
Affiliation:
[email protected], Mattson Technology, Inc., 47131 Bayside Parkway, Fremont, CA, 94538, United States
Yao Zhi Hu
Affiliation:
[email protected], Mattson Technology, Inc., Fremont, CA, 94538, United States
Jeff Gelpey
Affiliation:
[email protected], Mattson Technology Canada, Inc., Vancouver, V6P 6T7, Canada
Steve McCoy
Affiliation:
[email protected], Mattson Technology Canada, Inc., Vancouver, V6P 6T7, Canada
Wilfried Lerch
Affiliation:
[email protected], Mattson Thermal Products GmbH, Dornstadt, 89160, Germany
Silke Paul
Affiliation:
[email protected], Mattson Thermal Products GmbH, Dornstadt, 89160, Germany
Detlef Bolze
Affiliation:
[email protected], IHP, Frankfurt (Oder), 15236, Germany
Hamid Kheyrandish
Affiliation:
[email protected], CSMA Ltd., Stoke-on-Trent, ST4 7LQ, United Kingdom
Get access

Abstract

Low thermal budget annealing approaches, such as millisecond annealing or solid-phase epitaxy (SPE) of amorphized silicon, electrically activate implanted dopants while minimizing diffusion. However, it is also important to anneal damage to the crystal lattice in order to minimize junction leakage. Annealing experiments were performed on low-energy B implants into both crystalline silicon and into wafers pre-amorphized by Ge implantation. Some wafers also received As implants for halo-style doping, and in some cases the halo implants were pre-annealed at 1050°C before the B-doping. The B-implants were annealed by either SPE at 650°C, spike annealing at 1050°C, or by millisecond annealing with flash-assisted RTP™ (fRTP™) at temperatures between 1250°C and 1350°C. Residual damage was characterized by photoluminescence and non-contact junction leakage current measurements, which permit rapid assessment of damage removal efficacy. Damage from the heavy ions used for the halo and pre-amorphization implants dominates the defect annealing behaviour. The halo doping is the critical factor in determining junction leakage current. Millisecond annealing at high temperatures helps to minimize residual damage while limiting diffusion.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Duffy, R., Heringa, A., Loo, J., Augendre, E., Severi, S. and Curtatola, G., ECS Trans. 3(2) (2006) 19.Google Scholar
2. Timans, P., Gelpey, J., McCoy, S., Lerch, W. and Paul, S., Mater. Res. Soc. Symp. Proc. 912, (2006) 3.Google Scholar
3. Lerch, W., Paul, S., Niess, J., McCoy, S., Selinger, T., Gelpey, J., Cristiano, F., Severac, F., Gavelle, M., Boninelli, S., Pichler, P. and Bolze, D., Mater. Sci. Eng. B 124–125, (2005) 24.Google Scholar
4. Camillo-Castillo, R. A., Law, M. E., Jones, K. S., Radic, L., Lindsay, R. and McCoy, S., Appl. Phys. Lett. 88, (2006) 232104.Google Scholar
5. Noda, T., Felch, S., Parihar, V., Vrancken, C., Janssens, T., Bender, H. and Vandervorst, W., Mater. Res. Soc. Symp. Proc. 912, (2006) 191.Google Scholar
6. Lerch, W., Paul, S., Niess, J., Cristiano, F., Lamrani, Y., Calvo, P., Cherkashin, N., Downey, D. F. and Arevalo, E. A., J. Electrochem. Soc. 152, (2005) G787.Google Scholar
7. Faifer, V. N., Schroder, D. K., Current, M. I., Clarysse, T., Timans, P. J., Zangerle, T., Vandervorst, W., Wong, T. M. H., Moussa, A., McCoy, S., Gelpey, J., Lerch, W., Paul, S., Bolze, D. and Halim, J., J. Vac. Sci. Technol. B 25, (2007) 1588.Google Scholar
8. Buczkowski, A., Orschel, B., Kim, S., Rouvimov, S., Snegirev, B., Fletcher, M. and Kirscht, F., J. Electrochem. Soc. 150, (2003) G436.Google Scholar
9. Severi, S., Augendre, E., Thirupapuliyur, S., Ahmed, K., Felch, S., Parihar, V., Nouri, F., Hoffman, T., Noda, T., O'Sullivan, B., Ramos, J., Andrés, E. San, Pantisano, L., Keersgieter, A. De, Schreutelkamp, R., Jennings, D., Mahapatra, S., Moroz, V., Meyer, K. De, Absil, P., Jurczak, M. and Biesemans, S., in Technical Digest of the International Electron Devices Meeting 2006 (IEEE, Piscataway, 2006) p. 859.Google Scholar
10. The Stopping and Range of Ions in Matter, http://www.srim.org.Google Scholar
11. Dunham, S. T. and Wu, C. D., J. Appl. Phys. 78, (1995) 2362.Google Scholar
12. Prussin, S., Margolese, D. I. and Tauber, R. N., J. Appl. Phys. 57, (1985) 180.Google Scholar
13. Timans, P. J., Acharya, N. and Amarilio, I., ECS Proceedings PV 2000-9, (2000) 375.Google Scholar
14. Fiory, A. T. and Bourdelle, K. K., Appl. Phys. Lett. 74, (1999) 2658.Google Scholar
15. Mokhberi, A., Griffin, P. B., Plummer, J. D., Paton, E., McCoy, S. and Elliott, K., IEEE Trans. Electron. Dev. 49, (2002) 1183.Google Scholar
16. Banerjee, S., in Handbook of Semiconductor Manufacturing Technology, edited by Doering, R. and Nishi, Y., (CRC Press, Boca Raton, FL, 2008) p. 8–1.Google Scholar
17. Bonafos, C., Omri, M., de, B. Mauduit, BenAssayag, G., Claverie, A., Alquier, D., Martinez, A. and Mathiot, D., J. Appl. Phys. 82, (1997) 2855.Google Scholar