Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T13:32:49.745Z Has data issue: false hasContentIssue false

Effects of Thinned Multi-Stacked Wafer Thickness on Stress Distribution in the Wafer-on-a-Wafer (WOW) Structure

Published online by Cambridge University Press:  31 January 2011

Hideki Kitada
Affiliation:
[email protected], University of Tokyo, Tokyo, Japan
Nobuyuki Maeda
Affiliation:
[email protected], University of Tokyo, Tokyo, Japan
Koji Fujimoto
Affiliation:
[email protected], University of Tokyo, Tokyo, Japan
Kousuke Suzuki
Affiliation:
[email protected], Dai Nippon Printing, Chiba, Japan
Tomoji Nakamura
Affiliation:
[email protected], Fujitsu Laboratories Ltd, Kanagawa, Japan
Takayuki Ohba
Affiliation:
[email protected], University of Tokyo, Tokyo, Japan
Get access

Abstract

In the trough silicon via (TSV) structure for 3-dimensional integration (3DI), large thermal-mechanical stress acts in the TSV caused by the mismatch in thermal expansion coefficient (CTE) of the TSV materials. In this study, the stress of multi-stacked thin silicon wafers composed of copper TSV and copper/low-k BEOL structure was analyzed by the finite element method (FEM), aiming to reduce the stress of TSV of 3D-IC. The results of sensitivity analysis using design of experiment (DOE) indicated that the thickness of the silicon and adhesive layer are the key factors for the structural integration of TSV design.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Jourdain, A. Stoukatch, S. Moor, P. De, Ruythooren, W. Pargfrieder, S. Swinnen, B. and Beyne, E.. Proceeding of International Interconnect Technology Conference, (2007) p 207.Google Scholar
[2] Liu, F. Yu, R. R. Young, A. M. Doyle, J. P. Wang, X. Shi, L. Chen, K.-N., Li, X. Dipaola, D. A., Brown, D. Ryan, C. T. Hagan, J. A. Wong, K. H. Lu, M. Gu, X. Klymko, N. R. Perfecto, E. D., Merryman, A. G. Kelly, K. A. Purushothaman, S. Koester, S. J. Wisnieff, R. and Haensch, W. Technical digest of IEDM, (2008) p 599.Google Scholar
[3] Kurita, Y. Matsui, S. Takahashi, N. Soejima, K. Komuro, M. Itou, M. Kakegawa, C. Kawano, M., Egawa, Y. Saeki, Y. Kikuchi, H. Kato, O. Yanagisawa, A. Mitsuhashi, T. Ishino, M. Shibata, K. Uchiyama, S. Yamada, J. and Ikeda, H.. Proceeding of ECTC, (2007) p 821.Google Scholar
[4] Leduc, P. Crécy, F. de, Fayolle, M. Charlet, B. Enot, T. Zussy, M. Jones, B. Barbé, J.-C., Kernevez, N., Sillon, N. Maitrejean, S. Louis, D. Passemard, G.. Proceeding of International Interconnect Technology Conference, (2007) p 210.Google Scholar
[5] Okoro, C. Yang, Y. Vandevelde, B. Swinnen, B. Vandepitte, D. Verlinden, B. Wolf, I. De, Proceeding of International Interconnect Technology Conference, (2008) p 16.Google Scholar
[6] Maeda, N. Kitada, H. Fujimoto, K. Suzuki, K. Nakamura, T. and Ohba, T. Proc. of Advanced Metallization Conference, (2008) p 91.Google Scholar
[7] Ohba, T. Maeda, N. Kitada, H. Fujimoto, K. Suzuki, K. Nakamura, T. Kawai, A. Arai, K.. Proceeding of Material for Advanced Metallization (2009) p 127.Google Scholar