Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T17:22:23.767Z Has data issue: false hasContentIssue false

Effects of the Schottky electrode structure in GaN based UV-VUV (50-360 nm) photodetector

Published online by Cambridge University Press:  21 March 2011

Atsushi Motogaito
Affiliation:
Department of Electrical and Electronic Engineering, Mie University, 1515 Kamihama, Tsu, Mie 514-8507, Japan
Keiichi Ohta
Affiliation:
Department of Electrical and Electronic Engineering, Mie University, 1515 Kamihama, Tsu, Mie 514-8507, Japan
Kazumasa Hiramatsu
Affiliation:
Department of Electrical and Electronic Engineering, Mie University, 1515 Kamihama, Tsu, Mie 514-8507, Japan
Youichiro Ohuchi
Affiliation:
Mitsubishi Cable Industries, LTD., Telecommunication & Photonics Research Laboratory, 4-3 Ikejiri, Itami, Hyogo 664-0027, Japan
Kazuyuki Tadatomo
Affiliation:
Mitsubishi Cable Industries, LTD., Telecommunication & Photonics Research Laboratory, 4-3 Ikejiri, Itami, Hyogo 664-0027, Japan
Yutaka Hamamura
Affiliation:
Nikon Corporation, Precision Equipment Company, 1-10-1 Asamizodai, Sagamihara, Kanagawa 228-0828, Japan
Kazutoshi Fukui
Affiliation:
Research Center for Development of Far-Infrared Region, Fukui University, 3-9-1 Bunkyo, Fukui, Fukui 910-8507, Japan
Get access

Abstract

Characterization of Schottky barrier UV detectors with a comb-shaped electrode and a transparent electrode for VUV region using synchrotron radiation was carried out. These Schottky type detectors are effective to operate in UV and VUV light (50<l >360 nm). In particular, the latter realizes high responsivity (0.01 A/W for VUV light) and no photoemission of Au and GaN. The penetration depth for VUV light was estimated to 0.01 m. So the VUV light was absorbed in near the surface of i-GaN layer or the interface of Au and i-GaN layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Khan, M. A., Kuznia, J. N., Olson, D. T., Hove, J. M. Van, Blasingame, M. and reitz, L. F.: Appl. Phys. Lett. 60, 2917 (1992).Google Scholar
2. Khan, M. A., Kuznia, J. N., Olson, D. T., Blasingame, M. and Bhattarai, A. R.: Appl. Phys. Lett. 63, 2455 (1993).Google Scholar
3. Chen, Q., Yang, J. W., Oninsky, A., Gangopadhay, S., Lim, B., Anwar, M. Z., Kahn, M. A., Kuksenkov, D. and Temkin, H.: Appl. Phys. Lett. 70, 2277 (1997).Google Scholar
4. Monroy, E., Calle, F., Munoz, E., Beaumont, B., Omnés, F. and Gibart, P.: Phys. Stat. Sol. (a) 176, 141 (1999).Google Scholar
5. Motogaito, A., Yamaguchi, M., Hiramatsu, K., Kotoh, M., Ohuchi, Y., Tadatomo, K., Hamamura, Y. and Fukui, K.: Jpn. J. Appl. Phys. 40, L368 (2001).Google Scholar
6. Motogaito, A., Ohta, K., Hiramatsu, K., Ohuchi, Y., Tadatomo, K., Hamamura, Y. and Fukui, K.: Phys. Stat. Sol. (a) 188, 337 (2001).Google Scholar
7. Carrano, J. C., Li, T., Grudowski, P. A., Eiting, C. J., Dupuis, R. D. and Campbell, J. C.: J. Appl. Phys. 83, 6148 (1998).Google Scholar
8. Walker, D., Saxler, A., Kung, P., Zhang, X., Hamilton, M., Diaz, J. and Razeghi, M.: Appl. Phys. Lett. 72, 3303 (1998).Google Scholar
9. Parish, G., Keller, S., Kozodoy, P., Ibbetson, J. P., Marchand, H., Fini, P. T., Flischer, S. B., DenBaars, S. P., Mishra, U. K. and Tarsa, E. J.: Appl. Phys. Lett. 75, 247 (1999).Google Scholar
10. Fukui, K., Nakagawa, H., Shimoyama, I., Nakagawa, K., Okamura, H., Nanba, T., Hasumoto, M. and Kinoshita, T.: J. Synchrotron Rad. 5, 836 (1998).Google Scholar
11. Fukui, K., Miura, H., Nakagawa, H., Shimoyama, I., Nakagawa, K., Okamura, H., Nanba, T., Hasumoto, M. and Kinoshita, T.: Nucl. Instrum. & Methods in Phys. Res. A. 467/468, 601 (2001).Google Scholar