Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T02:24:25.654Z Has data issue: false hasContentIssue false

Effects of the Amorphous Oxide Intergranular Layer Structure and Bonding on the Fracture Toughness of a High Purity Silicon Nitride

Published online by Cambridge University Press:  11 February 2011

A. Ziegler
Affiliation:
Lawrence Livermore National Laboratory, University of California, Livermore, CA 94551, USA
C. Kisielowski
Affiliation:
Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA
M. J. Hoffmann
Affiliation:
IKM, University of Karlsruhe, D-76131 Karlsruhe, Germany
R. O. Ritchie
Affiliation:
Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA
Get access

Abstract

The microstructural evolution and structural characteristics and transitions in the thin grain-boundary oxide films in a silicon nitride ceramic, specifically between two adjacent grains and not the triple junctions, are investigated to find their effect on the macroscopic fracture properties. It is found that by heat treating a model Si3N4-2wt% Y2O3 ceramic for ∼200 hr at 1400°C in air, the fracture toughness can be increased by ∼100%, coincident with a change in fracture mechanism from transgranular to intergranular. Structural phase transformations occur in the thin grain boundaries during oxidation that are revealed by XRD, EDX, Raman and EELS analyses. They affect the local bonding of atoms. It is concluded that only specific crystal “building blocks”, i.e., tetrahedra, are transformed along the grain boundary and the resulting difference in the atomic structure of the oxide interface is seen directly to alter the macroscopic fracture behavior.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lange, F. F., Davis, B. I., Metcalf, M. G., J. Mat. Sci. 18, 1497 (1983).Google Scholar
2. Cinibulk, M. K., Thomas, G., Johnson, S. M., J. Am. Ceram. Soc. 73, 1606 (1990).Google Scholar
3. Sun, E. Y., Becher, P. F., Hsueh, C. H., Painter, G. S., Waters, S. B., Hwang, S. L.. Hoffmann, M. J., Acta Mat. 47, 2777 (1999).Google Scholar
4. Becher, P. F., Sun, E. Y., Hsueh, C. H., Alexander, K. B., Hwang, S. L., Waters, S. B., Westmoreland, C. G., Acta Mat. 44, 3881 (1996).Google Scholar
5. Hoffmann, M. J., Geyer, A., Oberacker, R., J. Euro. Ceram. Soc. 19, 2359 (1999).Google Scholar
6. Müllejans, H., Bruley, J., Ultramicroscopy 53, 351 (1994).Google Scholar
7. Wang, Y. C., Fitzgerald, A., Nelson, E. C., Song, C., O'Keefe, M. A., Kisielowski, C., Microscopy and Microanalysis 5, 822 (1999).Google Scholar
8. Wiederhorn, S. M., Annual Review of Materials Science 14, 373 (1984).Google Scholar
9. Ritchie, R. O., Mater. Sci. Eng. A103, 15 (1988).Google Scholar
10. Nakayasu, T., Yamada, T., Tanaka, I., Adachi, H., Goto, S., J. Am. Ceram. Soc. 81, 565 (1998).Google Scholar
11. Painter, G. S., Becher, P. F., Shelton, W. A., private communication (2002).Google Scholar
12. Ziegler, A., Kisielowski, C., Hoffmann, M.J., Ritchie, R.O., J. Am. Ceram. Soc. (2002) in review.Google Scholar
13. Felsche, J., Naturwissenschaften 57, 127 (1970).Google Scholar
14. Idrestedt, I., Brosset, C., Acta Chem. Scan. 18, 1879 (1964).Google Scholar