Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T02:18:36.925Z Has data issue: false hasContentIssue false

Effects of substrates and catalysts compositions on the crystalline quality of InP Nanowires grown on SrTiO3 (001), Si(001) and InP (111)

Published online by Cambridge University Press:  01 February 2011

Khalid Naji
Affiliation:
[email protected], Lyon Institute of Nanotechnology, Lyon, France
Herve Dumont
Affiliation:
[email protected], Lyon Institute of Nanotechnology, lyon, France
Guillaume Saint-Girons
Affiliation:
[email protected], Lyon Institute of Nanotechnology, lyon, France
Gilles Patriarche
Affiliation:
[email protected], Lyon Institute of Nanotechnology, lyon, France
michel Gendry
Affiliation:
[email protected], Lyon Institute of Nanotechnology, lyon, France
Get access

Abstract

Indium phosphide (InP) nanowires (NWs) were grown by molecular beam epitaxy on various substrates including SrTiO3 (001), Si (001) and InP (111) at a growth temperature of 380°C. We used the Vapor Liquid Solid assisted method with Au as a metal catalyst. The composition of the catalyst particles and the crystalline structure of the nanowires were compared using reflection high energy electron diffraction, scanning electron microscopy and high resolution transmission electron microscope. It is found that InP nanowires grown onto InP and SrTiO3 substrates are structurally defects free with a wurtzite structure. On Si (001) substrates, the presence of stacking faults and cubic phase insertion along the growth direction is observed. The effect of the substrate on the composition of catalyst droplets and consequently on the crystalline quality of the nanowires is discussed for the conditions of nucleation and defect formation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Wagner, R. S. and Ellis, W. C. Appl. Phys. Lett. 4. 89 (1964).Google Scholar
2 Ting, S.M. and Fitzgerald, E.A., J. Appl. Phys. 87, 2618, (2000).10.1063/1.372227Google Scholar
3 F, N. Fang S, Adomi, K, Lyer, S, Morkoc, Z, Choi, H and Otsuka, C 1990 J. Appl. Phys. 68 R31 Google Scholar
4 Roest, A. L., Verheijen, M. A., Wunnicke, O., Serafin, S., Wondergem, H. and Bakkers, E. P A M Nanotechnology 17 (2006) S271–S275 Google Scholar
5 Cheng, J., Regreny, P., Largeau, L., Patriarche, G., Mauguin, O., Naji, K., Hollinger, G., Saint-Girons, G., Journal of Crystal Growth 311 (2009) 1042–1045 Google Scholar
6 Pfund, A., Shorubalko, I., Leturcq, R., Borgstömb, M. T., Gramm, F., Mümmer, E., Ensslin, K., Chimia 2006, 60, 729 Google Scholar
7 Bao, J., Bell, D. C., Capasso, F., Wagner, J. B., Mårtensson, T., Trägårdh, J., and Samuelson, L. Nano Lett., Vol. 8, No. 3, 2008 Google Scholar
8 Glass, F., Harmand, J. C., and Patriarche, Gilles. PRL 99, 146101 (2007)Google Scholar
9 Shtrikman, H., Popovitz-Biro, R., Kertinin, A., Houben, L., Heiblum, M., Bukala, M., Galicka, M., Buczko, R., and Kacman, P. Nano. Lett., Vol …Google Scholar
10 Leitsmanna, R. and Bechstedt, F. J. Appl. Phys. 102, 063528 (2007)Google Scholar
11 Johansson, J., Karlsson, L. S., Dick, K. A., Bolinsson, J., Wacaser, B. A., Deppert, K., and Samuelson, L., JournalofCrystalGrowth 310 (2008) 5102–5105 Google Scholar