Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T08:36:03.719Z Has data issue: false hasContentIssue false

Effects of Sputtered Particle Energy on the Properties of SiO2 Films

Published online by Cambridge University Press:  25 February 2011

Yasunori Taga
Affiliation:
Toyota Central Research and Development Laboratories, Inc., Nagakute-cho, Aichi-gun, Aichi-ken 480–11, Japan
Takeshi Ohwaki
Affiliation:
Toyota Central Research and Development Laboratories, Inc., Nagakute-cho, Aichi-gun, Aichi-ken 480–11, Japan
Get access

Abstract

The secondary ion energy distributions (SIED) emitted from Si under various conditions of targets (Si, SiO2) and primary ions (Ar+, O+) were measured and the thin SiO2 films were deposited by magnetron sputtering techniques under the corresponding conditions to the SIED experiments. The most probable energies of silicon oxygen cluster ions of SimOn+ (m, n=l, 2,…) are equal to those of Al+ thermal ions, while those of Si+ (ℓ=l, 2,…) remain unchanged with the introduction of oxygen in chamber during Ar+ ion bombardment. The currentvoltage plots of SiO2 films are also measured and found to be influenced by the deposition conditions.

It is concluded that the differences in current-voltage characteristics of SiO2 films prepared under various sputtering conditions can be reasonably explained in terms of the changes in the most probable energy of the sputtered particles.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sigmund, P., Phys. Rev. 184, 383 (1969).Google Scholar
2. Kelly, R., Nucl. Instr. and Meth. B18, 398 (1987).Google Scholar
3. Rudat, M. A. and Morrison, G. H., Surf. Sci. 82, 549 (1979).Google Scholar
4. Ohwaki, T. and Taga, Y., Jap. J. Appl. Phys. 23, 1466 (1984).Google Scholar
5. Martin, P. J., J. Mater. Sci. 21, 1 (1986).CrossRefGoogle Scholar
6. Weissmantel, C., Bewilogua, K., Dietrich, D., Erler, H. J., Hinneberg, H, J., Klose, S., Nowick, W., and Reisse, G., Thin Solid Films 72, 19 (1980).Google Scholar
7. Takagi, T., Thin Solid Films 92, 1 (1982).CrossRefGoogle Scholar
8. Cuomo, J. J., Harper, J. M. E., Wu, C. R., and Hammond, R. H., J. Vac. Sci. Technol. 20, 349 (1982).Google Scholar
9. Ohwaki, T. and Taga, Y., Surf. Sci. 157, L308 (1985).CrossRefGoogle Scholar
10. Ohwaki, T. and Taga, Y., Nucl. Instr. and Meth. B33, 523 (1988).Google Scholar
11. Taga, Y., in Secondary Ion Mass Spectormetry SIMS V, ed. by Benninghoven, A., Colton, R. J., Simons, D. S., and Werner, H. W. (Springer, New York, 1985), P.32.Google Scholar
12. Liebl, H., J. Vac. Sci. Technol. 12, 385 (1975).Google Scholar
13. Sawada, Y. and Taga, Y., Thin Solid Films 110, L129 (1983).Google Scholar
14. Benninghoven, A., Surf. Sci. 53, 596 (1975).Google Scholar
15. Thompson, M. W., Phiolos. Mag. 18, 377 (1968).Google Scholar
16. Roth, J., T. Appl. Phys. 52, 91 (1983).CrossRefGoogle Scholar
17. Saidoh, M., Gnaser, H., and Hofer, W. O., Appl. Phys. A40, 197 (1986).Google Scholar
18. Sroubek, Z., Surf. Sci. 44, 47 (1974).Google Scholar
19. Stuart, R. V. and Wehner, G. K., J. Appl. Phys. 35, 1819 (1964).Google Scholar
20. Taga, Y., Inoue, K. and Satta, K., Surf. Sci. 119, L363 (1982).Google Scholar
21. Taga, Y., Isogai, A. and Nakajima, K., Surf. Sci. 86, 591 (1979).Google Scholar
22. Sze, S. M., J. Appl. Phys. 38, 2951 (1967).CrossRefGoogle Scholar
23. Oh, S. and Yeow, Y. T., Solid-State Electronics 31, 1113 (1988).CrossRefGoogle Scholar