Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T07:27:19.976Z Has data issue: false hasContentIssue false

Effects of Rapid Thermal Annealing on SiNx Capped MBE GaAs

Published online by Cambridge University Press:  03 September 2012

Akira Ito
Affiliation:
Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466, Japan
Akira Usami
Affiliation:
Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466, Japan
Hiroyuki Ueda
Affiliation:
Toyota Central R.&D. Labs. Inc., Nagakute, Aichi 480–11, Japan
Hiroyuki Kano
Affiliation:
Toyota Central R.&D. Labs. Inc., Nagakute, Aichi 480–11, Japan
Takao Wada
Affiliation:
Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466, Japan
Get access

Abstract

Effects of rapid thermal annealing (RTA) with a SiNx encapsulant on molecular beam epitaxial GaAs are studied with deep level transient spectroscopy (DLTS) measurements and x-ray photoelectron spectroscopy (XPS) measurements. The RTA was performed at various temperatures form 800°C to 1100°C for 6sec. The electron trap EL2 is produced by the RTA above 850°C The EL2 depth profile produced after the RTA is fitted with a complementary error function. The SiNx cap layer is more effective to prevent the formation of the EL2 than the SiO* cap layer during the RTA, because the critical temperature of the SiNx cap where the EL2 concentration starts to increase is higher than that of the SiOx cap. Slight increase of the oxidized Ga atoms is observed after the RTA near the cap surface. The enhancement of the EL2 trap is discussed considering the outdiffusion of Ga atoms into the cap layer during the RTA.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Haynes, T. E. and Chu, W. K., Appl. Phys. Lett., 50, 1071 (1987)Google Scholar
2) Katayama, M., Tokuda, Y., Ando, N., Inoue, Y., Usami, A. and Wada, T., Appl. Phys. Lett. 54, 2559 (1989)Google Scholar
3) Katayama, M., Tokuda, Y., Inoue, Y., Usami, A., and Wada, T., J. Appl. Phys., 69, 3541 (1991)CrossRefGoogle Scholar
4) Kitagawa, A., Usami, A., Wada, T., Tokuda, Y., and Kano, H., J. Appl. Phys., 65, 606 (1989)CrossRefGoogle Scholar
5) Ito, A., Usami, A., Kitagawa, A., Wada, T., Tokuda, Y., and Kano, H., J. Appl. Phys., 69, 2238 (1991)Google Scholar
6) Hyuga, F., Watanabe, K., Osaka, J., and Hoshikawa, K., Appl. Phys. Lett., 48, 1742 (1986)Google Scholar
7) Kuzauhara, M. and H. Kohzu., Appl. Phys. Lett., 44, 527 (1984)Google Scholar
8) Xin, S. H., Schaff, W. J., Wood, C. E. C., and Eastman, L. F., Appl. Phys. Lett., 41, 742 (1982)Google Scholar
9) For example, Singh, R., J. Appl. Phys., 63, R59 (1988) and references in therein.Google Scholar
10) Lang, D. V., Cho, A. Y., Gossard, C., Milegems, and Wiegman, W., J. Appl. Phys., 47, 2558 (1976)Google Scholar
11) Tokuda, Y., Shimizu, N. and Usami, A., Jpn. J. Appl. Phys., 18, 309 (1979)Google Scholar
12) Martin, G. M., Mitonneau, A. and Mircea, A., Electron. Letts., 13, 191 (1977)Google Scholar
13) Vincent, G., Bois, D. and Chantre, A., J. Appl. Phys., 56 2922 (1984)Google Scholar
14) Taniguchi, M., and Ikoma, T., Appl. Phys. Lett., 45, 69 (1984)Google Scholar
15) Blood, P. and Harris, J. J., J. Appl. Phys., 56 993 (1984)CrossRefGoogle Scholar
16) Chiang, S. Y., and Pearson, G. L., J. Appl. Phys., 46, 2986 (1975)Google Scholar
17) Haga, T., Tachino, N., Abe, Y., Kasahara, J., Okubora, A., and Hassegawa, H., J. Appl. Phys., 66, 5809 (1989)Google Scholar