Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T17:55:35.851Z Has data issue: false hasContentIssue false

Effects of Processing Parameters on the Laser Deposition of High Temperature Superconducting Thin Films

Published online by Cambridge University Press:  26 February 2011

N. S. Nogar
Affiliation:
Chemical and Laser Sciences Division, MS G738
R. Castain
Affiliation:
Chemical and Laser Sciences Division, MS G738
R. C. Dye
Affiliation:
Chemical and Laser Sciences Division, MS G738
S. Foltyn
Affiliation:
Chemical and Laser Sciences Division, MS G738
R. E. Muenchausen
Affiliation:
Exploratory Research and Development Center, MS K778 Los Alamos National Laboratory, Los Alamos, New Mexico 87545
X. D. Wu
Affiliation:
Exploratory Research and Development Center, MS K778 Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Get access

Abstract

Y2O3 pressed powders were ablated by pulses from a XeCl excimer laser, operating at 308 nm, 150 mj/pulse, ≈15 nsec/pulse and 20 Hz. Emission spectra from Y∗ and YO∗ were recorded as a function of ambient oxygen pressure in the range 10−5 − 4×10−1 Torr, at a laser fluence of ≈ 4 J/cm2. A kinetic model is developed to describe the results, and the application to production of laser-deposited high-temperature superconductor thin films is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Cheung, J. T. and Sankur, H.. CRC Crit. Rev. Sol. St. Mat. Sci. , 15, 63109 (1988).Google Scholar
2. Sankur, H. and Cheung, J. T.. Appl. Phys. A, A47, 271284 (1988).Google Scholar
3. Venkatesan, T., Wu, Xindi, Inam, Arun, Chang, Chuan C., Hegde, Manjanain S. and Dutta, Barundeb. Ieee J. Quantum Electron, 25, 2388 93(1989).Google Scholar
4. Narayan, J., Biunno, N., Singh, R., Holland, O. W. and Auciello, O.. Appl. Phys. Lett., 51, 1845 7(1987).Google Scholar
5. Chang, C. C., Wu, X. D., Inam, A., Hwang, D. M., Venkatesan, T., Barboux, P. and Tarascon, J. M.. Appl. Phys. Lett. , 53, 51719(1988).Google Scholar
6. Muenchausen, R. E., Hubbard, K. M., Foltyn, S., Jenkins, C., Estler, R. C. and Nogar, N. S.. Appl. Phys. Lett. , 56, 578 (1990).Google Scholar
7. Wu, X. D., et al. Appl. Phys. Lett. , 56, 14813 (1990).Google Scholar
8. Wu, X. D., et al. Appl. Phys. Lett. , 57, 523525 (1990).Google Scholar
9. Estler, R. C. and Nogar, N. S.. J. Appl. Phys. , in press, (1990).Google Scholar
10. Dye, R. C., Muenchausen, R. E. and Nogar, N. S.. Chem. Phys. Lett. , submitted, (1991).Google Scholar
11. Manos, D. M. and Parson, J. M.. J. Chem. Phys, 63, 3575 (1975); Chem. Phys. Lett. 69, 231 (1978).Google Scholar
12. Chalek, C. L. and Gole, J. L., Chem. Phys. 19, 59 (1977); , J. Chem. Phys., 65, 2845 (1976).Google Scholar
13. Wijchers, T., Dijkerman, H. A., Zeegers, P. J. Th. and Alkemade, C. Th. J., Chem. Phys. 91, 141 (1984).Google Scholar