Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T15:32:31.608Z Has data issue: false hasContentIssue false

Effects of Oxygen on the Microstructures, Crystallization, Thermal and Electrical Properties of Tellurium Doped GeSb9 Films

Published online by Cambridge University Press:  01 February 2011

Hsiang-Wen Shih
Affiliation:
[email protected], National Tsing Hua University, Materials Sciecnce & Engineering, 101, Sec. 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
Yu-Hsung Perng
Affiliation:
[email protected], National Tsing Hua University, Materials Sciecnce & Engineering, 101, Sec. 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
Lih-Hsin Chou
Affiliation:
[email protected], National Tsing Hua University, Materials Sciecnce & Engineering, 101, Sec. 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
Get access

Abstract

Tellurium and oxygen co-doped GeSb9 films (denoted as GeSb9-Te/O) with fixed Te concentration for phase change random access memory (PRAM) are investigated. The crystallization temperatures increased from 169°C to 201°C and the crystallization activation energy decreased from 5.53 eV to 2.89 eV as the oxygen concentration increased from 0 at.% to 17.3 at.%. The structures of crystalline GeSb9-Te/O films annealed at 250°C are identified as Sb rhombohedral structure with oxygen concentration less than 18 at.%, and the lattice parameter increased from 4.48 Å to 4.52 Å as the oxygen concentration increased from 0 at.% to 17.3 at.%. The grain size became smaller after oxygen doping. For films with oxygen concentration below 6 at.% and annealed at 250°C, only some of Ge form germanium suboxide GeOx, others remain metallic state. In films with oxygen concentration 28.1 at.% and annealed at 250°C, the GeO2 bond and Sb2O3 bond co-existed. The resistivity of amorphous phase (or crystalline phase) increases from 5.17 Ω-cm to 24.81 Ω-cm (or 1.12×10−4 Ω-cm to 1.05×10−3 Ω-cm), about 4.8 times (or about 9.4 times) as oxygen concentration increases from 0 at.% to 17.3 at.%. The film properties show beneficial in PRAM application.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lee, K. J. Cho, B. H. Cho, W. Y. Kang, S. Choi, B. G. Oh, H. R. Lee, C. S. Kim, H. J. and Park, J. M. IEEE Symposium on Computers and Communications, ISCC, 472 (2007)Google Scholar
2. Siegel, J. Afonso, C. N. and Solis, J. Appl. Phys. Lett. 75, 3102 (1999).Google Scholar
3. Solis, J. Afonso, C. N. Trull, J. F. and Morilla, M. C. J. Appl. Phys. 75, 7788 (1994).Google Scholar
4. Pieterson, L. van, Lankhorst, M. H. R. Schijndel, M. van, Kuiper, A. E. T. and Roosen, J. H. J. J. Appl. Phys. 97, 83520 (2005).Google Scholar
5. Matsuzaki, N. Kurotsuchi, K. Matsui, Y. Tonomura, O. Yamamoto, N. Fujisaki, Y. Kitai, N. Takemura, R. Osada, K. Hanzawa, S. Moriya, H. Iwasaki, T. Kawahara, T. Takaura, N. Terao, M. Matsuoka, M. and Moniwa, M. IEEE International Electron Device Meeting 2005, Washington, U.S.A., Dec. 5, 2005, IEDM Technical Digest Sec31-1 (2005).Google Scholar
6. Chou, L.H. Lee, K. H. and Perng, Y.H. The Ninth International Symposium on Sputtering & Plasma Processes, ISSP 2007, Kanazawa, Japan, June 6, 2007, Proceedings, 115 (2007)Google Scholar
7. Kissinger, H. E. Anal. Chem. 29, 1702 (1957).Google Scholar
8. Moulder, J. F. Stickle, W. F. Sobol, P. E. and Bomben, K. D. Handbook of X-ray Photoelectron Spectroscopy (Minn.: Physical Electronics, Eden Prairie, 1995) p.2232379.Google Scholar
9. Hsu, F.P. Nat. Tsing Hua Univ., MS Thesis (2001).Google Scholar
10. Liu, B. Song, Z. Zhang, T. Feng, S. Chen, B. Appl. Surf. Sci. 242, 62 (2005).Google Scholar