Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T02:36:29.281Z Has data issue: false hasContentIssue false

Effects of Nitridation by N2O or No on the Electrical Properties of Thin Gate or Tunnel Oxides

Published online by Cambridge University Press:  14 March 2011

C. Gerardi
Affiliation:
STMicroelectronics, Central Research & Development, Catania Technology Center, Stradale Primosole 50, 95121 Catania, Italy
T. Rossetti
Affiliation:
STMicroelectronics, Central Research & Development, Catania Technology Center, Stradale Primosole 50, 95121 Catania, Italy
M. Melanotte
Affiliation:
STMicroelectronics, Central Research & Development, Catania Technology Center, Stradale Primosole 50, 95121 Catania, Italy
S. Lombardo
Affiliation:
Istituto Nazionale di Metodologie e Tecnologie per la Microelettronica (IMETEM), Consiglio Nazionale delle Ricerche, Stradale Primosole 50, 95121 Catania, Italy
I. Crupi
Affiliation:
Istituto Nazionale di Metodologie e Tecnologie per la Microelettronica (IMETEM), Consiglio Nazionale delle Ricerche, Stradale Primosole 50, 95121 Catania, Italy
Get access

Abstract

We have studied the effects of nitridation on the leakage current of thin (7-8 nm) gate or tunnel oxides. A polarity dependence of the tunneling current has been found this behavior is related to the presence of a thin silicon oxynitride layer at the SiO2/Si-substrate interface. The oxynitride layer lowers the tunneling current when electrons are injected from the interface where the oxynitride is located (substrate injection). The current flowing across the oxide when electrons are injected from the opposite interface (gate injection) is not influenced by the oxynitride. The increase of nitrogen concentration leads to a decrease of the tunneling current for substrate electron injection.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Maria, D.J. Di, Cartier, E., and Arnold, D., J. Appl. Phys. 73, 3367 (1993).Google Scholar
2. Schuegraf, K.F., and Hu, C., Semiconductor Sci. Technol. 9, 989 (1994).Google Scholar
3. Hori, T., “Gate Dielectrics and MOS ULSIs, Principles, Technologies and Applications, Springer - Verlag, Berlin - Heidelberg (1997) p.209.Google Scholar
4. Okada, Y., Tobin, Ph. J., Reid, K. G., Hedge, R.I., Maiti, B. and Ajuria, S. A., IEEE Trans. Electron Devices 41, 1608 (1994).Google Scholar
5. Gusev, E.P., Lu, H.C., Gustafsson, T., Garfunkel, E., Green, M.L. and Brasen, D., J. Appl. Phys. 82, 896 (1997).Google Scholar
6. Gerardi, C., Zonca, R., Crivelli, B. and Alessandri, M., J. Electrochem Soc. 146, 3059 (1999).Google Scholar
7. Kim, B.Y, Han, L.K., Wristers, D., Fulford, J., and Kwong, D.L., in “The Physics and Chemistry of SiO2 and the Si - SiO2 Interface - 3, Massoud, H.Z., Poindexter, E.H., Helms, C.R. Eds., Proc. Vol. 96 – 1, The Electrochemical Society, NJ (1996) p.772.Google Scholar
8. Bhat, M., Han, L.K., Wristers, D., Yan, J., Kwong, D.L. and Fulford, J., Appl. Phys. Lett. 66, 1225 (1995).Google Scholar
9. Nissan-Cohen, Y., Shappir, J. and Frohman-Bentchowsky, D., J. App. Phys. 54, 5793 (1983).Google Scholar
10. Hori, T., “Gate Dielectrics and MOS ULSIs, Principles, Technologies and Applications, Springer -Verlag, Berlin - Heidelberg (1997) p. 23.Google Scholar
11. Sze, S.M., “Physics of Semiconductor Devices”, second edition, J. Wiley & Sons, NY, (1981).Google Scholar
12. Guo, Xin, Ma, T.P., IEEE Electron Device Letters 19, 207 (1998).Google Scholar
13. Shi, Y., Ma, T.P., Prasad, Sharad, IEEE Trans. Electron Devices 45, 2355 (1998).Google Scholar
14. , Shi, Wang, X., Ma, T.P., IEEE Trans. Electron Devices 46, 362 (1999).Google Scholar