Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T02:05:11.609Z Has data issue: false hasContentIssue false

Effects of Minimizing the Driving Force for Epitaxy in the Ge/Si(001) System

Published online by Cambridge University Press:  15 February 2011

P. O. Hansson
Affiliation:
Max-Planck-lnstitut fir Festkörperforschung, Heisenbergstrasse 1, D-W-7000 Stuttgart 80, Germany
E. Bauser
Affiliation:
Max-Planck-lnstitut fir Festkörperforschung, Heisenbergstrasse 1, D-W-7000 Stuttgart 80, Germany
M. Albrecht
Affiliation:
Universität Erlangen-Nürnberg, Institut für WerkstoffwissenschaftenVII, Cauerstrasse 6, D-W-8520 Erlangen, Germany
H. P. Strunk
Affiliation:
Universität Erlangen-Nürnberg, Institut für WerkstoffwissenschaftenVII, Cauerstrasse 6, D-W-8520 Erlangen, Germany
Get access

Abstract

A new technique for Ge/Si heteroepitaxy from the solution, referred to as interfacial energy epitaxy, produces Ge layers with atomically abrupt interfaces to Si and permits monolayer-controlled growth at temperatures up to 937°C. The initial driving force for epitaxy comes from interfacial energy differences between Ge, Si, and the solvent or growth mediator, whose surface free energy has to be smaller than that of Ge. A superheating of the growth solution partly out-balances this driving force, which allows us to minimize the total driving force for epitaxy. Two-dimensional growth results. Subsequent faceting and pseudomorphic island growth manifest additional driving forces for epitaxy, which may be due to interfacial- and strain energy gain.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hansson, P. O., Albrecht, M., Strunk, H. P., Bauser, E., Werner, J. H., Thin Solid Films 216, 199 (1992).CrossRefGoogle Scholar
2. Copel, M., Reuter, M. C., Kaxiras, E., and Tromp, R. M., Phys. Rev. Lett. 63, 632 (1989).Google Scholar
3. Tromp, R. M. and Reuter, M. C., Phys. Rev. Lett. 68, 954 (1992).Google Scholar
4. Hansson, P. O. and Albrecht, M., German Patent Application (31 March 1993).Google Scholar
5. Stenkamp, D. and Jäger, W., Electron Microscopy 1, 545 (1992).Google Scholar
6. Handbook of Chemistry and Physics, 64th ed. (CRC Press, Inc., Boca Raton, 1984), p. F21.Google Scholar
7. Mezey, L. Z. and Giber, J., Jap. J. Appl. Phys. 21, 1569 (1982).Google Scholar
8. Brice, J. C., The Growth of Crystals from Liquids (North-Holland, Amsterdam, 1973).Google Scholar
9. Kelires, P. C. and Tersoff, J., Phys. Rev. Lett. 63, 1164 (1989).Google Scholar
10. Ogawa, S. and Ino, S. in Advances in Epitaxy and Endotaxy, edited by Schneider, H. G. and Ruth, V. (VEB, Leipzig, 1971), p. 207.Google Scholar